Sustainable recycling and regeneration of redox flow battery components

Yong Zuo , Wenxuan Fu , Puiki Leung , Tadele H. Wondimu , Mohd Rusllim Mohamed , Cristina Flox , A.A. Shah , Qian Xu , Qiang Liao
{"title":"Sustainable recycling and regeneration of redox flow battery components","authors":"Yong Zuo ,&nbsp;Wenxuan Fu ,&nbsp;Puiki Leung ,&nbsp;Tadele H. Wondimu ,&nbsp;Mohd Rusllim Mohamed ,&nbsp;Cristina Flox ,&nbsp;A.A. Shah ,&nbsp;Qian Xu ,&nbsp;Qiang Liao","doi":"10.1016/j.fub.2025.100044","DOIUrl":null,"url":null,"abstract":"<div><div>As the demand for large-scale sustainable energy storage grows, redox flow batteries (RFBs), particularly all-vanadium RFBs (VRFBs), have emerged as a promising solution. This review explores recycling and regeneration strategies for key VRFB components, including vanadium electrolytes, ion-exchange membranes and carbon felt electrodes, to enhance their sustainability and economic viability. Vanadium electrolytes, which account for up to 30 % of system costs, can be effectively recovered through ion-exchange and chemical reduction processes, reducing dependence on primary vanadium production. Ion-exchange membranes, primarily Nafion®, are high-cost components. While recycling methods, such as chemical dissolution and recasting show promise, challenges remain in maintaining ionic selectivity and mechanical integrity. Carbon felt electrodes, which are essential for electrochemical performance, degrade over time due to fouling and oxidation and require regeneration through thermal, chemical or physical treatments. Despite the distinct challenges of recycling each component, their effective recovery is critical for reducing operational costs, extending system lifetimes and minimizing environmental impacts. This review highlights recent technological advancements, current limitations and the broader economic and environmental benefits of sustainable recycling strategies, emphasizing their crucial role in ensuring the long-term viability of VRFBs for grid-scale energy storage.</div></div>","PeriodicalId":100560,"journal":{"name":"Future Batteries","volume":"5 ","pages":"Article 100044"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Batteries","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950264025000231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As the demand for large-scale sustainable energy storage grows, redox flow batteries (RFBs), particularly all-vanadium RFBs (VRFBs), have emerged as a promising solution. This review explores recycling and regeneration strategies for key VRFB components, including vanadium electrolytes, ion-exchange membranes and carbon felt electrodes, to enhance their sustainability and economic viability. Vanadium electrolytes, which account for up to 30 % of system costs, can be effectively recovered through ion-exchange and chemical reduction processes, reducing dependence on primary vanadium production. Ion-exchange membranes, primarily Nafion®, are high-cost components. While recycling methods, such as chemical dissolution and recasting show promise, challenges remain in maintaining ionic selectivity and mechanical integrity. Carbon felt electrodes, which are essential for electrochemical performance, degrade over time due to fouling and oxidation and require regeneration through thermal, chemical or physical treatments. Despite the distinct challenges of recycling each component, their effective recovery is critical for reducing operational costs, extending system lifetimes and minimizing environmental impacts. This review highlights recent technological advancements, current limitations and the broader economic and environmental benefits of sustainable recycling strategies, emphasizing their crucial role in ensuring the long-term viability of VRFBs for grid-scale energy storage.
氧化还原液流电池组件的可持续回收和再生
随着大规模可持续能源存储需求的增长,氧化还原液流电池(rfb),特别是全钒rfb (vrfb)已成为一种有前途的解决方案。本文探讨了VRFB关键部件的回收和再生策略,包括钒电解质、离子交换膜和碳毡电极,以提高其可持续性和经济可行性。占系统成本高达30% %的钒电解质可以通过离子交换和化学还原过程有效回收,从而减少对原钒生产的依赖。离子交换膜,主要是Nafion®,是高成本的组件。虽然化学溶解和重铸等回收方法很有前景,但在保持离子选择性和机械完整性方面仍然存在挑战。对于电化学性能至关重要的碳毡电极,由于结垢和氧化,会随着时间的推移而降解,需要通过热、化学或物理处理进行再生。尽管每个组件的回收都面临着不同的挑战,但它们的有效回收对于降低运营成本、延长系统使用寿命和最大限度地减少对环境的影响至关重要。这篇综述强调了最近的技术进步、当前的限制以及可持续回收战略的更广泛的经济和环境效益,强调了它们在确保vrfb用于电网规模储能的长期可行性方面的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信