Yang Xu , Fortunatus Masanja , Yuewen Deng , Liqiang Zhao
{"title":"Transcriptome and lipidome integration unveils key mechanisms constraining bivalve larval sensitivity in an acidifying sea","authors":"Yang Xu , Fortunatus Masanja , Yuewen Deng , Liqiang Zhao","doi":"10.1016/j.cbd.2025.101450","DOIUrl":null,"url":null,"abstract":"<div><div>The intensity, frequencye and duration of seawater acidification in coastal seas have already surpassed projections for open oceans. Bivalve larvae are extremely sensitive to intensifying coastal seawater acidificaiton during their initial shell building, a critical period constraining recruitment success and population maintenance, but underlying mechanisms of larval shell formation sensitivity to acidification remain largely debated. Here, we performed an integrated analysis of the transcriptome and lipidome of trochophore of <em>Ruditapes philippinarum</em> to compare the core molecular responses involved in initial shell formation under ambient (pH 8.1), moderately (pH 7.7), and severely (pH 7.4) acidified conditions. Ocean acidification (OA) affected the ion transport efficiency by inhibiting gene expression of key ion transporters, thereby inhibiting initial shell formation, but the gene downregulation in the moderate exposure group was more significant. OA also induced major membrane lipid remodeling in larvae, which also significantly affected the ion transport efficiency. The TAG content of larvae which sustained the energy supply for active transport of calcification substrates and synthesis of organic matrix in the severe exposure group was significantly reduced. Overall, OA inhibited the formation of the initial larval shell, but different levels of OA had different inhibitory mechanisms on the initial larval shell formation, and the present study also further identified the role of lipids in initial shell formation, which can provide a theoretical basis for for a more accurate and comprehensive assessment of the impact of OA on bivalve calcification in an acidifying ocean.</div></div>","PeriodicalId":55235,"journal":{"name":"Comparative Biochemistry and Physiology D-Genomics & Proteomics","volume":"54 ","pages":"Article 101450"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology D-Genomics & Proteomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1744117X25000383","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The intensity, frequencye and duration of seawater acidification in coastal seas have already surpassed projections for open oceans. Bivalve larvae are extremely sensitive to intensifying coastal seawater acidificaiton during their initial shell building, a critical period constraining recruitment success and population maintenance, but underlying mechanisms of larval shell formation sensitivity to acidification remain largely debated. Here, we performed an integrated analysis of the transcriptome and lipidome of trochophore of Ruditapes philippinarum to compare the core molecular responses involved in initial shell formation under ambient (pH 8.1), moderately (pH 7.7), and severely (pH 7.4) acidified conditions. Ocean acidification (OA) affected the ion transport efficiency by inhibiting gene expression of key ion transporters, thereby inhibiting initial shell formation, but the gene downregulation in the moderate exposure group was more significant. OA also induced major membrane lipid remodeling in larvae, which also significantly affected the ion transport efficiency. The TAG content of larvae which sustained the energy supply for active transport of calcification substrates and synthesis of organic matrix in the severe exposure group was significantly reduced. Overall, OA inhibited the formation of the initial larval shell, but different levels of OA had different inhibitory mechanisms on the initial larval shell formation, and the present study also further identified the role of lipids in initial shell formation, which can provide a theoretical basis for for a more accurate and comprehensive assessment of the impact of OA on bivalve calcification in an acidifying ocean.
期刊介绍:
Comparative Biochemistry & Physiology (CBP) publishes papers in comparative, environmental and evolutionary physiology.
Part D: Genomics and Proteomics (CBPD), focuses on “omics” approaches to physiology, including comparative and functional genomics, metagenomics, transcriptomics, proteomics, metabolomics, and lipidomics. Most studies employ “omics” and/or system biology to test specific hypotheses about molecular and biochemical mechanisms underlying physiological responses to the environment. We encourage papers that address fundamental questions in comparative physiology and biochemistry rather than studies with a focus that is purely technical, methodological or descriptive in nature.