Examining finite-time behaviors in the fractional Gray–Scott model: Stability, synchronization, and simulation analysis

Shaher Momani , Iqbal M. Batiha , Issam Bendib , Adel Ouannas , Amel Hioual , Dalah Mohamed
{"title":"Examining finite-time behaviors in the fractional Gray–Scott model: Stability, synchronization, and simulation analysis","authors":"Shaher Momani ,&nbsp;Iqbal M. Batiha ,&nbsp;Issam Bendib ,&nbsp;Adel Ouannas ,&nbsp;Amel Hioual ,&nbsp;Dalah Mohamed","doi":"10.1016/j.ijcce.2025.02.004","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the behavior and stability of the fractional-order Gray–Scott model, with a specific focus on achieving finite-time stability and synchronization. It introduces essential concepts, including the Gamma function, the Riemann–Liouville fractional-order integral operator, the Caputo fractional derivative, and the Mittag-Leffler function, to establish a foundational framework for subsequent analysis. Equilibrium points are defined, distinguishing between initial and finite-time equilibria, and the conditions for finite-time stability, including settling time, are precisely outlined. Stability results for this model are presented through theorems with detailed proofs, elucidating the roles of Lyapunov functions, class functions, and other system parameters. Furthermore, the paper explores finite-time synchronization schemes in master–slave systems, providing a mathematical framework for understanding and achieving synchronization within a finite time frame. This framework illuminates synchronization dynamics and their practical implications for controlling complex systems. Additionally, numerical examples illustrate finite-time stability and synchronization within the Gray–Scott reaction–diffusion model.</div></div>","PeriodicalId":100694,"journal":{"name":"International Journal of Cognitive Computing in Engineering","volume":"6 ","pages":"Pages 380-390"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cognitive Computing in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666307425000142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the behavior and stability of the fractional-order Gray–Scott model, with a specific focus on achieving finite-time stability and synchronization. It introduces essential concepts, including the Gamma function, the Riemann–Liouville fractional-order integral operator, the Caputo fractional derivative, and the Mittag-Leffler function, to establish a foundational framework for subsequent analysis. Equilibrium points are defined, distinguishing between initial and finite-time equilibria, and the conditions for finite-time stability, including settling time, are precisely outlined. Stability results for this model are presented through theorems with detailed proofs, elucidating the roles of Lyapunov functions, class functions, and other system parameters. Furthermore, the paper explores finite-time synchronization schemes in master–slave systems, providing a mathematical framework for understanding and achieving synchronization within a finite time frame. This framework illuminates synchronization dynamics and their practical implications for controlling complex systems. Additionally, numerical examples illustrate finite-time stability and synchronization within the Gray–Scott reaction–diffusion model.
检验分数Gray-Scott模型中的有限时间行为:稳定性、同步和仿真分析
本文研究分数阶Gray-Scott模型的行为和稳定性,重点研究如何实现有限时间稳定性和同步。介绍了Gamma函数、Riemann-Liouville分数阶积分算子、Caputo分数阶导数、Mittag-Leffler函数等基本概念,为后续分析建立了基础框架。定义了平衡点,区分了初始平衡点和有限时间平衡点,并精确地概述了有限时间稳定的条件,包括稳定时间。通过定理给出了该模型的稳定性结果,并给出了详细的证明,阐明了李雅普诺夫函数、类函数和其他系统参数的作用。此外,本文还探讨了主从系统中的有限时间同步方案,为理解和实现有限时间内的同步提供了一个数学框架。这个框架阐明了同步动力学及其对控制复杂系统的实际意义。此外,数值例子说明了Gray-Scott反应扩散模型的有限时间稳定性和同步性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
13.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信