The influence of the additional coil and ferromagnetic rings on high-temperature superconducting engine magnets

IF 1.3 3区 物理与天体物理 Q4 PHYSICS, APPLIED
Wei Liu , Wentao Zhang , Weiwei Zhang , Yongbin Wang , Haowei Wu , Donghui Liu
{"title":"The influence of the additional coil and ferromagnetic rings on high-temperature superconducting engine magnets","authors":"Wei Liu ,&nbsp;Wentao Zhang ,&nbsp;Weiwei Zhang ,&nbsp;Yongbin Wang ,&nbsp;Haowei Wu ,&nbsp;Donghui Liu","doi":"10.1016/j.physc.2025.1354665","DOIUrl":null,"url":null,"abstract":"<div><div>A plasma engine with high-temperature superconducting (HTS) tapes offers advantages such as high efficiency, high thrust, and high specific impulse. However, due to the magnetic field-dependent characteristics of HTS tapes, the magnetic field at the coil ends tends to decrease rapidly. To mitigate this issue, a small additional coil can be wound at the coil end to enhance the magnetic field, or ferromagnetic rings can be employed to modify the local magnetic flux lines direction within the superconductor, thereby reducing the impact of radial magnetic fields on the critical current of the HTS tapes. In this study, to analyze the effects of the additional coil and ferromagnetic rings, a two-dimensional axisymmetric numerical model is established, and the T-A formulation is utilized to investigate the axial centerline magnetic field distribution of the HTS engine magnet. The simulation results indicate that varying the coil current primarily affects the peak value of the magnetic field without altering its configuration. The addition of an additional coil at the coil end effectively mitigates the rapid decline in the magnetic field at the coil end. The results also indicate that adding ferromagnetic rings can reduce the influence of the radial magnetic field on the critical current, thus enhancing the magnetic field at the coil ends. Furthermore, the results of the radial magnetic field distribution at the end of Coil-4 indicate that ferromagnetic rings can significantly reduce the magnitude of the radial magnetic field at the coil surface.</div></div>","PeriodicalId":20159,"journal":{"name":"Physica C-superconductivity and Its Applications","volume":"630 ","pages":"Article 1354665"},"PeriodicalIF":1.3000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica C-superconductivity and Its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092145342500019X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

A plasma engine with high-temperature superconducting (HTS) tapes offers advantages such as high efficiency, high thrust, and high specific impulse. However, due to the magnetic field-dependent characteristics of HTS tapes, the magnetic field at the coil ends tends to decrease rapidly. To mitigate this issue, a small additional coil can be wound at the coil end to enhance the magnetic field, or ferromagnetic rings can be employed to modify the local magnetic flux lines direction within the superconductor, thereby reducing the impact of radial magnetic fields on the critical current of the HTS tapes. In this study, to analyze the effects of the additional coil and ferromagnetic rings, a two-dimensional axisymmetric numerical model is established, and the T-A formulation is utilized to investigate the axial centerline magnetic field distribution of the HTS engine magnet. The simulation results indicate that varying the coil current primarily affects the peak value of the magnetic field without altering its configuration. The addition of an additional coil at the coil end effectively mitigates the rapid decline in the magnetic field at the coil end. The results also indicate that adding ferromagnetic rings can reduce the influence of the radial magnetic field on the critical current, thus enhancing the magnetic field at the coil ends. Furthermore, the results of the radial magnetic field distribution at the end of Coil-4 indicate that ferromagnetic rings can significantly reduce the magnitude of the radial magnetic field at the coil surface.
附加线圈和铁磁环对高温超导发动机磁体的影响
高温超导带等离子体发动机具有效率高、推力大、比冲高等优点。然而,由于高温超导带的磁场依赖特性,线圈两端的磁场有迅速减小的趋势。为了缓解这个问题,可以在线圈端额外缠绕一个小线圈来增强磁场,或者可以使用铁磁环来修改超导体内部的局部磁通量线方向,从而减少径向磁场对高温超导磁带临界电流的影响。为了分析附加线圈和铁磁环的影响,建立了二维轴对称数值模型,利用T-A公式研究了高温超导发动机磁体的轴向中心线磁场分布。仿真结果表明,线圈电流的变化主要影响磁场的峰值,而不会改变其结构。在线圈端增加一个额外的线圈,有效地减轻了线圈端磁场的迅速下降。结果还表明,添加铁磁环可以减小径向磁场对临界电流的影响,从而增强线圈端部的磁场。此外,对线圈4末端的径向磁场分布结果表明,铁磁环可以显著降低线圈表面的径向磁场大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
11.80%
发文量
102
审稿时长
66 days
期刊介绍: Physica C (Superconductivity and its Applications) publishes peer-reviewed papers on novel developments in the field of superconductivity. Topics include discovery of new superconducting materials and elucidation of their mechanisms, physics of vortex matter, enhancement of critical properties of superconductors, identification of novel properties and processing methods that improve their performance and promote new routes to applications of superconductivity. The main goal of the journal is to publish: 1. Papers that substantially increase the understanding of the fundamental aspects and mechanisms of superconductivity and vortex matter through theoretical and experimental methods. 2. Papers that report on novel physical properties and processing of materials that substantially enhance their critical performance. 3. Papers that promote new or improved routes to applications of superconductivity and/or superconducting materials, and proof-of-concept novel proto-type superconducting devices. The editors of the journal will select papers that are well written and based on thorough research that provide truly novel insights.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信