Multi-ancestry GWAS reveals loci linked to human variation in LINE-1- and Alu-insertion numbers

Q2 Medicine
Juan I. Bravo , Lucia Zhang , Bérénice A. Benayoun
{"title":"Multi-ancestry GWAS reveals loci linked to human variation in LINE-1- and Alu-insertion numbers","authors":"Juan I. Bravo ,&nbsp;Lucia Zhang ,&nbsp;Bérénice A. Benayoun","doi":"10.1016/j.tma.2025.02.001","DOIUrl":null,"url":null,"abstract":"<div><div>LINE-1 (L1) and Alu are two families of transposable elements (TEs) occupying ∼17 % and ∼11 % of the human genome, respectively. Though only a small fraction of L1 copies is able to produce the machinery to mobilize autonomously, Alu and degenerate L1s can hijack their functional machinery and mobilize <em>in trans</em>. The expression and subsequent mobilization of L1 and Alu can exert pathological effects on their hosts. These features have made them promising focus subjects in studies of aging where they can become active. However, mechanisms regulating TE activity are incompletely characterized, especially in diverse human populations. To address these gaps, we leveraged genomic data from the 1000 Genomes Project to carry out a trans-ethnic GWAS of L1/Alu insertion singletons. These are rare, recently acquired insertions observed in only one person and which we used as proxies for variation in L1/Alu insertion numbers. Our approach identified SNVs in genomic regions containing genes with potential and known TE regulatory properties, and it enriched for SNVs in regions containing known regulators of L1 expression. Moreover, we identified reference TE copies and structural variants that associated with L1/Alu singletons, suggesting their potential contribution to TE insertion number variation. Finally, a transcriptional analysis of lymphoblastoid cells highlighted potential cell cycle alterations in a subset of samples harboring L1/Alu singletons. Collectively, our results suggest that known TE regulatory mechanisms may be active in diverse human populations, expand the list of loci implicated in TE insertion number variability, and reinforce links between TEs and disease.</div></div>","PeriodicalId":36555,"journal":{"name":"Translational Medicine of Aging","volume":"9 ","pages":"Pages 25-40"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Medicine of Aging","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S246850112500001X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

LINE-1 (L1) and Alu are two families of transposable elements (TEs) occupying ∼17 % and ∼11 % of the human genome, respectively. Though only a small fraction of L1 copies is able to produce the machinery to mobilize autonomously, Alu and degenerate L1s can hijack their functional machinery and mobilize in trans. The expression and subsequent mobilization of L1 and Alu can exert pathological effects on their hosts. These features have made them promising focus subjects in studies of aging where they can become active. However, mechanisms regulating TE activity are incompletely characterized, especially in diverse human populations. To address these gaps, we leveraged genomic data from the 1000 Genomes Project to carry out a trans-ethnic GWAS of L1/Alu insertion singletons. These are rare, recently acquired insertions observed in only one person and which we used as proxies for variation in L1/Alu insertion numbers. Our approach identified SNVs in genomic regions containing genes with potential and known TE regulatory properties, and it enriched for SNVs in regions containing known regulators of L1 expression. Moreover, we identified reference TE copies and structural variants that associated with L1/Alu singletons, suggesting their potential contribution to TE insertion number variation. Finally, a transcriptional analysis of lymphoblastoid cells highlighted potential cell cycle alterations in a subset of samples harboring L1/Alu singletons. Collectively, our results suggest that known TE regulatory mechanisms may be active in diverse human populations, expand the list of loci implicated in TE insertion number variability, and reinforce links between TEs and disease.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Translational Medicine of Aging
Translational Medicine of Aging Medicine-Geriatrics and Gerontology
CiteScore
5.30
自引率
0.00%
发文量
2
审稿时长
103 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信