Peng Wang , Miaomiao Cao , Xianlin Zhu , Suhong Wang , Rongrong Ni , Changchun Yang , Biao Yang
{"title":"Visually multimodal depression assessment based on key questions with weighted multi-task learning","authors":"Peng Wang , Miaomiao Cao , Xianlin Zhu , Suhong Wang , Rongrong Ni , Changchun Yang , Biao Yang","doi":"10.1016/j.image.2025.117279","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, depression has received attention due to its high prevalence and high risk of suicide. In contrast, the increased pressure on health care and the shortage of mental health professionals have led to the failure to detect and intervene in depression promptly. To solve the above problems, we propose a visual multi-modal fusion network for depression assessment based on weighted multi-task learning (WMTL). First, the visual cues of different modalities are collected from the subjects when they answer key questions in the simulated interview to mitigate redundancy. Afterward, spatial attention-based feature embedding modules are proposed to extract depression-aware features from different visual cues. Finally, a hierarchical weighted attention fusion (HAF) module is presented to fuse the depression-aware features from different modalities and facilitate depression assessment. Comprehensive evaluations are conducted on the benchmarking DAIC-WOZ. Experimental results show that the proposed method performs well in assessing depression, with an average accuracy of 76.96% for ten questions and an F1 score of 0.85. The high performance also indicates a strong correlation between key questions in the interview and depression levels.</div></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"135 ","pages":"Article 117279"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing-Image Communication","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923596525000268","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, depression has received attention due to its high prevalence and high risk of suicide. In contrast, the increased pressure on health care and the shortage of mental health professionals have led to the failure to detect and intervene in depression promptly. To solve the above problems, we propose a visual multi-modal fusion network for depression assessment based on weighted multi-task learning (WMTL). First, the visual cues of different modalities are collected from the subjects when they answer key questions in the simulated interview to mitigate redundancy. Afterward, spatial attention-based feature embedding modules are proposed to extract depression-aware features from different visual cues. Finally, a hierarchical weighted attention fusion (HAF) module is presented to fuse the depression-aware features from different modalities and facilitate depression assessment. Comprehensive evaluations are conducted on the benchmarking DAIC-WOZ. Experimental results show that the proposed method performs well in assessing depression, with an average accuracy of 76.96% for ten questions and an F1 score of 0.85. The high performance also indicates a strong correlation between key questions in the interview and depression levels.
期刊介绍:
Signal Processing: Image Communication is an international journal for the development of the theory and practice of image communication. Its primary objectives are the following:
To present a forum for the advancement of theory and practice of image communication.
To stimulate cross-fertilization between areas similar in nature which have traditionally been separated, for example, various aspects of visual communications and information systems.
To contribute to a rapid information exchange between the industrial and academic environments.
The editorial policy and the technical content of the journal are the responsibility of the Editor-in-Chief, the Area Editors and the Advisory Editors. The Journal is self-supporting from subscription income and contains a minimum amount of advertisements. Advertisements are subject to the prior approval of the Editor-in-Chief. The journal welcomes contributions from every country in the world.
Signal Processing: Image Communication publishes articles relating to aspects of the design, implementation and use of image communication systems. The journal features original research work, tutorial and review articles, and accounts of practical developments.
Subjects of interest include image/video coding, 3D video representations and compression, 3D graphics and animation compression, HDTV and 3DTV systems, video adaptation, video over IP, peer-to-peer video networking, interactive visual communication, multi-user video conferencing, wireless video broadcasting and communication, visual surveillance, 2D and 3D image/video quality measures, pre/post processing, video restoration and super-resolution, multi-camera video analysis, motion analysis, content-based image/video indexing and retrieval, face and gesture processing, video synthesis, 2D and 3D image/video acquisition and display technologies, architectures for image/video processing and communication.