DA-Net: Deep attention network for biomedical image segmentation

IF 3.4 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Yingyan Gu, Yan Wang, Hua Ye, Xin Shu
{"title":"DA-Net: Deep attention network for biomedical image segmentation","authors":"Yingyan Gu,&nbsp;Yan Wang,&nbsp;Hua Ye,&nbsp;Xin Shu","doi":"10.1016/j.image.2025.117283","DOIUrl":null,"url":null,"abstract":"<div><div>Deep learning-based image segmentation techniques are of great significance to biomedical image analysis and clinical disease diagnosis, among which U-Net is one of the classic biomedical image segmentation algorithms and is widely used in the field of biomedicine. In this paper, we propose an improved triplet attention module and embed it into the U-Net framework to form a novel deep attention network, called DA-Net, for biomedical image segmentation. Specifically, an additional layer is stacked into the original U-Net, resulting in a six-layer U-shaped network. Then, the double convolution module of the U-Net is replaced with a composite block which consists of the improved triplet attention module and the residual concatenate block, to obtain abundant valuable features effectively. We redesign the network structure to increase its width and depth and train our model with the pixel position aware loss, realizing the synchronous increase of the mean IoU value and average Dice index. Extensive experiments have been carried out on two publicly available biomedical datasets, including the 2018 Data Science Bowl (DSB) and the international skin imaging collaboration (ISIC) 2018 Challenge, and a self-built fetal cerebellar ultrasound dataset from Affiliated Hospital of Jiangsu University, named JSUAH<img>Cerebellum. The mIoU and mDice of DA-Net can reach 87.45 % and 92.98 % on the JSUAH<img>Cerebellum, 87.36 % and 91.37 % on the 2018 Data Science Bowl, and 86.75 % and 91.34 % on the ISIC-2018 Challenge, respectively. Experimental results demonstrate that our DA-Net achieves promising performance in terms of segmentation robustness and generalization ability.</div></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"135 ","pages":"Article 117283"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing-Image Communication","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092359652500030X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Deep learning-based image segmentation techniques are of great significance to biomedical image analysis and clinical disease diagnosis, among which U-Net is one of the classic biomedical image segmentation algorithms and is widely used in the field of biomedicine. In this paper, we propose an improved triplet attention module and embed it into the U-Net framework to form a novel deep attention network, called DA-Net, for biomedical image segmentation. Specifically, an additional layer is stacked into the original U-Net, resulting in a six-layer U-shaped network. Then, the double convolution module of the U-Net is replaced with a composite block which consists of the improved triplet attention module and the residual concatenate block, to obtain abundant valuable features effectively. We redesign the network structure to increase its width and depth and train our model with the pixel position aware loss, realizing the synchronous increase of the mean IoU value and average Dice index. Extensive experiments have been carried out on two publicly available biomedical datasets, including the 2018 Data Science Bowl (DSB) and the international skin imaging collaboration (ISIC) 2018 Challenge, and a self-built fetal cerebellar ultrasound dataset from Affiliated Hospital of Jiangsu University, named JSUAHCerebellum. The mIoU and mDice of DA-Net can reach 87.45 % and 92.98 % on the JSUAHCerebellum, 87.36 % and 91.37 % on the 2018 Data Science Bowl, and 86.75 % and 91.34 % on the ISIC-2018 Challenge, respectively. Experimental results demonstrate that our DA-Net achieves promising performance in terms of segmentation robustness and generalization ability.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Signal Processing-Image Communication
Signal Processing-Image Communication 工程技术-工程:电子与电气
CiteScore
8.40
自引率
2.90%
发文量
138
审稿时长
5.2 months
期刊介绍: Signal Processing: Image Communication is an international journal for the development of the theory and practice of image communication. Its primary objectives are the following: To present a forum for the advancement of theory and practice of image communication. To stimulate cross-fertilization between areas similar in nature which have traditionally been separated, for example, various aspects of visual communications and information systems. To contribute to a rapid information exchange between the industrial and academic environments. The editorial policy and the technical content of the journal are the responsibility of the Editor-in-Chief, the Area Editors and the Advisory Editors. The Journal is self-supporting from subscription income and contains a minimum amount of advertisements. Advertisements are subject to the prior approval of the Editor-in-Chief. The journal welcomes contributions from every country in the world. Signal Processing: Image Communication publishes articles relating to aspects of the design, implementation and use of image communication systems. The journal features original research work, tutorial and review articles, and accounts of practical developments. Subjects of interest include image/video coding, 3D video representations and compression, 3D graphics and animation compression, HDTV and 3DTV systems, video adaptation, video over IP, peer-to-peer video networking, interactive visual communication, multi-user video conferencing, wireless video broadcasting and communication, visual surveillance, 2D and 3D image/video quality measures, pre/post processing, video restoration and super-resolution, multi-camera video analysis, motion analysis, content-based image/video indexing and retrieval, face and gesture processing, video synthesis, 2D and 3D image/video acquisition and display technologies, architectures for image/video processing and communication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信