Analytic study and statistical enforcement of extended beta functions imposed by Mittag-Leffler and Hurwitz-Lerch Zeta functions

IF 1.6 Q2 MULTIDISCIPLINARY SCIENCES
MethodsX Pub Date : 2025-02-13 DOI:10.1016/j.mex.2025.103206
Faten F. Abdulnabi , Hiba F. Al-Janaby , Firas Ghanim
{"title":"Analytic study and statistical enforcement of extended beta functions imposed by Mittag-Leffler and Hurwitz-Lerch Zeta functions","authors":"Faten F. Abdulnabi ,&nbsp;Hiba F. Al-Janaby ,&nbsp;Firas Ghanim","doi":"10.1016/j.mex.2025.103206","DOIUrl":null,"url":null,"abstract":"<div><div>Special Function Theory is used in many mathematical fields to model scientific progress, from theoretical to practical. This helps efficiently analyze the newly expanded Beta class of functions on a complicated domain. We use Mittag-Leffler and Hurwitz Lerch zeta (HLZ) kernels to produce the Beta function using the convolution tool. This special function advances a statistical implementation research approach. This unique function also discusses and gives analytical benefits, including functional and summation relations, Mellin transformations, and integral representations. Additionally, many derivative formulae are obtained. The statistical implementation of expanded Beta distribution using the suggested beta function was also conducted. We use the extended Beta function to create the new extended ordinary hypergeometric function and Kummer function. Derivative formulae, integral representations, generating functions, and fractional derivatives are also investigated.<ul><li><span>•</span><span><div>Developed utilizing Mittag-Leffler and Hurwitz Lerch Zeta functions as kernels, delivering increased analytical and computational capabilities.</div></span></li><li><span>•</span><span><div>Comprises derivative formulae, integral representations, Mellin transformations, and generating functions, offering a comprehensive mathematical foundation.</div></span></li><li><span>•</span><span><div>Illustrates the use of the extended Beta function inside the Beta distribution, highlighting its statistical importance.</div></span></li></ul></div></div>","PeriodicalId":18446,"journal":{"name":"MethodsX","volume":"14 ","pages":"Article 103206"},"PeriodicalIF":1.6000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MethodsX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215016125000548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Special Function Theory is used in many mathematical fields to model scientific progress, from theoretical to practical. This helps efficiently analyze the newly expanded Beta class of functions on a complicated domain. We use Mittag-Leffler and Hurwitz Lerch zeta (HLZ) kernels to produce the Beta function using the convolution tool. This special function advances a statistical implementation research approach. This unique function also discusses and gives analytical benefits, including functional and summation relations, Mellin transformations, and integral representations. Additionally, many derivative formulae are obtained. The statistical implementation of expanded Beta distribution using the suggested beta function was also conducted. We use the extended Beta function to create the new extended ordinary hypergeometric function and Kummer function. Derivative formulae, integral representations, generating functions, and fractional derivatives are also investigated.
  • Developed utilizing Mittag-Leffler and Hurwitz Lerch Zeta functions as kernels, delivering increased analytical and computational capabilities.
  • Comprises derivative formulae, integral representations, Mellin transformations, and generating functions, offering a comprehensive mathematical foundation.
  • Illustrates the use of the extended Beta function inside the Beta distribution, highlighting its statistical importance.

Abstract Image

特殊函数理论在许多数学领域都被用于建立从理论到实践的科学进步模型。这有助于高效分析复杂域上新扩展的 Beta 类函数。我们使用 Mittag-Leffler 和 Hurwitz Lerch zeta (HLZ) 核,利用卷积工具生成 Beta 函数。这一特殊函数推进了统计实现研究方法。这个独特的函数还讨论并给出了分析优势,包括函数和求和关系、梅林变换和积分表示。此外,还获得了许多导数公式。我们还利用建议的贝塔函数对扩展贝塔分布进行了统计实现。我们利用扩展 Beta 函数创建了新的扩展普通超几何函数和库默函数。利用 Mittag-Leffler 和 Hurwitz Lerch Zeta 函数作为内核进行开发,提高了分析和计算能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
MethodsX
MethodsX Health Professions-Medical Laboratory Technology
CiteScore
3.60
自引率
5.30%
发文量
314
审稿时长
7 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信