On a class of finite mixture models that includes hidden Markov models

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY
Francesco Bartolucci , Silvia Pandolfi , Fulvia Pennoni
{"title":"On a class of finite mixture models that includes hidden Markov models","authors":"Francesco Bartolucci ,&nbsp;Silvia Pandolfi ,&nbsp;Fulvia Pennoni","doi":"10.1016/j.jmva.2025.105423","DOIUrl":null,"url":null,"abstract":"<div><div>In the context of longitudinal data, we introduce a class of finite mixture (FM) models that generalizes that of hidden Markov (HM) models, and derive conditions under which the two classes are equivalent. On the basis of this result, we develop a likelihood ratio (LR) misspecification test for assessing the latent structure of an HM model, along with a multiple version of this test that may be used in the presence of many latent states or time occasions. This testing procedure requires the maximum likelihood estimation of the two models under comparison, that is, the assumed HM model and the more general FM model, which is performed by suitable versions of the Expectation–Maximization algorithm. The approach is validated through a simulation study, aimed at assessing the performance of the proposed tests under different circumstances, and by an application using data derived from the SCImago Journal &amp; Country Rank database.</div></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"208 ","pages":"Article 105423"},"PeriodicalIF":1.4000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X25000181","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

In the context of longitudinal data, we introduce a class of finite mixture (FM) models that generalizes that of hidden Markov (HM) models, and derive conditions under which the two classes are equivalent. On the basis of this result, we develop a likelihood ratio (LR) misspecification test for assessing the latent structure of an HM model, along with a multiple version of this test that may be used in the presence of many latent states or time occasions. This testing procedure requires the maximum likelihood estimation of the two models under comparison, that is, the assumed HM model and the more general FM model, which is performed by suitable versions of the Expectation–Maximization algorithm. The approach is validated through a simulation study, aimed at assessing the performance of the proposed tests under different circumstances, and by an application using data derived from the SCImago Journal & Country Rank database.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信