One-stage keypoint detection network for end-to-end cow body measurement

IF 7.5 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Guangyuan Yang , Yongliang Qiao , Hongxing Deng , Javen Qinfeng Shi , Huaibo Song
{"title":"One-stage keypoint detection network for end-to-end cow body measurement","authors":"Guangyuan Yang ,&nbsp;Yongliang Qiao ,&nbsp;Hongxing Deng ,&nbsp;Javen Qinfeng Shi ,&nbsp;Huaibo Song","doi":"10.1016/j.engappai.2025.110333","DOIUrl":null,"url":null,"abstract":"<div><div>Body size measurement plays a crucial role in dairy cow breed selection and milk production. Employing intelligent systems for periodic assessments of body size empowers farmers to gauge the nutritional status of cows. The study introduces an end-to-end intelligent approach for the automatic measurement of cow body size via keypoint detection. Introducing Cow Keypoint-Net (CowK-Net), a one-stage dairy cow keypoint detection network. To improve the interaction of cow features at the channel level, we created the Keypoint Refine Machine (KPRM), designed to balance channel and spatial information through separate pathways effectively. Moreover, we devised an efficient hybrid encoder to interact the information across different scales. This encoder combines Convolutional Neural Network (CNN) based cross-scale fusion with Transformer-based intra-scale interaction, thereby optimizing the keypoint processing and integration. Customizing the loss function to the specific characteristics of the cow dataset ensures effective supervision of the keypoint prediction process. Additionally, we transformed the pixel coordinates of keypoints into three dimensions (3D) space, enabling automated measurement of body size. Field testing on a production farm revealed CowK-Net's accuracy, achieving an impressive 92.8%, surpassing existing keypoint detection methods. Notably, the hybrid encoder matched the accuracy of a Transformer-based encoder while reducing the number of parameters by 18%. Compared to manual measurements, our method demonstrated mean relative errors of 2.8%, 6.7%, 4.1%, and 4.4% for oblique body length, body height, hip height, and chest depth, respectively. The CowK-Net demonstrates its efficacy in measuring cow body size, laying solid foundation for the development of body measurement devices.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"146 ","pages":"Article 110333"},"PeriodicalIF":7.5000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197625003331","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Body size measurement plays a crucial role in dairy cow breed selection and milk production. Employing intelligent systems for periodic assessments of body size empowers farmers to gauge the nutritional status of cows. The study introduces an end-to-end intelligent approach for the automatic measurement of cow body size via keypoint detection. Introducing Cow Keypoint-Net (CowK-Net), a one-stage dairy cow keypoint detection network. To improve the interaction of cow features at the channel level, we created the Keypoint Refine Machine (KPRM), designed to balance channel and spatial information through separate pathways effectively. Moreover, we devised an efficient hybrid encoder to interact the information across different scales. This encoder combines Convolutional Neural Network (CNN) based cross-scale fusion with Transformer-based intra-scale interaction, thereby optimizing the keypoint processing and integration. Customizing the loss function to the specific characteristics of the cow dataset ensures effective supervision of the keypoint prediction process. Additionally, we transformed the pixel coordinates of keypoints into three dimensions (3D) space, enabling automated measurement of body size. Field testing on a production farm revealed CowK-Net's accuracy, achieving an impressive 92.8%, surpassing existing keypoint detection methods. Notably, the hybrid encoder matched the accuracy of a Transformer-based encoder while reducing the number of parameters by 18%. Compared to manual measurements, our method demonstrated mean relative errors of 2.8%, 6.7%, 4.1%, and 4.4% for oblique body length, body height, hip height, and chest depth, respectively. The CowK-Net demonstrates its efficacy in measuring cow body size, laying solid foundation for the development of body measurement devices.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Engineering Applications of Artificial Intelligence
Engineering Applications of Artificial Intelligence 工程技术-工程:电子与电气
CiteScore
9.60
自引率
10.00%
发文量
505
审稿时长
68 days
期刊介绍: Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信