{"title":"When structural break meets threshold effect: Factor analysis under structural instabilities","authors":"Chenchen Ma , Yundong Tu","doi":"10.1016/j.jeconom.2025.105972","DOIUrl":null,"url":null,"abstract":"<div><div>Structural instability has been one of the central research questions in economics and finance over many decades. This paper systematically investigates structural instabilities in high dimensional factor models, which portray both structural breaks and threshold effects simultaneously. The observed high dimensional time series are concatenated at an unknown number of break points, while they are described by multiple threshold factor models that are heterogeneous between any two consecutive subsamples. Both joint and sequential procedures for estimating the break points are developed based on the second moment of the pseudo factor estimates that fully ignore the structural instabilities. In each separated subsample, the group Lasso approach recently proposed by Ma and Tu (2023b) is adopted to efficiently identify the threshold factor structure. An information criterion is further proposed to determine the number of break points, which also serves the purpose to distinguish the two types of instabilities. Theoretical properties of the proposed estimators are established, and their finite sample performance is evaluated in Monte Carlo simulations. An empirical application to the U.S. financial market dataset demonstrates the consequences when structural break meets threshold effect in factor analysis.</div></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"249 ","pages":"Article 105972"},"PeriodicalIF":9.9000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407625000260","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Structural instability has been one of the central research questions in economics and finance over many decades. This paper systematically investigates structural instabilities in high dimensional factor models, which portray both structural breaks and threshold effects simultaneously. The observed high dimensional time series are concatenated at an unknown number of break points, while they are described by multiple threshold factor models that are heterogeneous between any two consecutive subsamples. Both joint and sequential procedures for estimating the break points are developed based on the second moment of the pseudo factor estimates that fully ignore the structural instabilities. In each separated subsample, the group Lasso approach recently proposed by Ma and Tu (2023b) is adopted to efficiently identify the threshold factor structure. An information criterion is further proposed to determine the number of break points, which also serves the purpose to distinguish the two types of instabilities. Theoretical properties of the proposed estimators are established, and their finite sample performance is evaluated in Monte Carlo simulations. An empirical application to the U.S. financial market dataset demonstrates the consequences when structural break meets threshold effect in factor analysis.
期刊介绍:
The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.