Effect of elevated temperature and stress state on ductile fracture behaviors in titanium alloy: Experiments and modeling

IF 4.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Rui Feng, Minghe Chen, Lansheng Xie, Hongrui Dong
{"title":"Effect of elevated temperature and stress state on ductile fracture behaviors in titanium alloy: Experiments and modeling","authors":"Rui Feng,&nbsp;Minghe Chen,&nbsp;Lansheng Xie,&nbsp;Hongrui Dong","doi":"10.1016/j.intermet.2025.108708","DOIUrl":null,"url":null,"abstract":"<div><div>This research aims to characterize the effects of elevated temperature and stress state on the yield and fracture behavior of forged TC4 alloy. The uniaxial tensile, compression, and shear experiments were performed with different geometry under wide stress triaxiality at 760–800 °C. The experimental results indicate that the strength of TC4 titanium alloy decreases monotonously and unevenly with the temperature increase. The tension-compression asymmetry changes nonlinearly with temperature and strain, and this asymmetry decreases with increasing temperature. With the increase of stress triaxiality, the dimples in the fracture morphology become larger and deeper, and the ductile fracture mechanism changes from shear fracture to dimple fracture mechanism. A modified-JC constitutive model was proposed, and the coefficient of determination are about 0.981 and 0.971 for UTS and UCS. The temperature related yield function of Cazacu-Barlat2004 was constructed to describe the non-uniform evolution characteristics related to temperature and strain, and the fracture-related variables were calibrated with the hybrid experimental and numerical method under acceptable prediction accuracy. Finally, the temperature-related variables were successfully introduced into the DF2016 fracture model, and the fracture occurrence under different temperature and stress states were predicted with small prediction error. These research results can provide a basis for the shape and performance control of titanium alloy in the hot forming process.</div></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":"180 ","pages":"Article 108708"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intermetallics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0966979525000731","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This research aims to characterize the effects of elevated temperature and stress state on the yield and fracture behavior of forged TC4 alloy. The uniaxial tensile, compression, and shear experiments were performed with different geometry under wide stress triaxiality at 760–800 °C. The experimental results indicate that the strength of TC4 titanium alloy decreases monotonously and unevenly with the temperature increase. The tension-compression asymmetry changes nonlinearly with temperature and strain, and this asymmetry decreases with increasing temperature. With the increase of stress triaxiality, the dimples in the fracture morphology become larger and deeper, and the ductile fracture mechanism changes from shear fracture to dimple fracture mechanism. A modified-JC constitutive model was proposed, and the coefficient of determination are about 0.981 and 0.971 for UTS and UCS. The temperature related yield function of Cazacu-Barlat2004 was constructed to describe the non-uniform evolution characteristics related to temperature and strain, and the fracture-related variables were calibrated with the hybrid experimental and numerical method under acceptable prediction accuracy. Finally, the temperature-related variables were successfully introduced into the DF2016 fracture model, and the fracture occurrence under different temperature and stress states were predicted with small prediction error. These research results can provide a basis for the shape and performance control of titanium alloy in the hot forming process.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Intermetallics
Intermetallics 工程技术-材料科学:综合
CiteScore
7.80
自引率
9.10%
发文量
291
审稿时长
37 days
期刊介绍: This journal is a platform for publishing innovative research and overviews for advancing our understanding of the structure, property, and functionality of complex metallic alloys, including intermetallics, metallic glasses, and high entropy alloys. The journal reports the science and engineering of metallic materials in the following aspects: Theories and experiments which address the relationship between property and structure in all length scales. Physical modeling and numerical simulations which provide a comprehensive understanding of experimental observations. Stimulated methodologies to characterize the structure and chemistry of materials that correlate the properties. Technological applications resulting from the understanding of property-structure relationship in materials. Novel and cutting-edge results warranting rapid communication. The journal also publishes special issues on selected topics and overviews by invitation only.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信