The use of IoT sensor data to dynamically assess maintenance risk in service contracts

IF 6 2区 管理学 Q1 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Stijn Loeys, Robert N. Boute, Katrien Antonio
{"title":"The use of IoT sensor data to dynamically assess maintenance risk in service contracts","authors":"Stijn Loeys, Robert N. Boute, Katrien Antonio","doi":"10.1016/j.ejor.2025.01.041","DOIUrl":null,"url":null,"abstract":"We explore the value of using operational sensor data to improve the risk assessment of service contracts that cover all maintenance-related costs during a fixed period. An initial estimate of the contract risk is determined by predicting the maintenance costs via a gradient-boosting machine based on the machine’s and contract’s characteristics observable at the onset of the contract period. We then periodically update this risk assessment based on operational sensor data observed throughout the contract period. These sensor data reveal operational machine usage that drives the maintenance risk. We validate our approach on a portfolio of about 4,000 full-service contracts of industrial equipment and show how dynamic sensor data improves risk differentiation.","PeriodicalId":55161,"journal":{"name":"European Journal of Operational Research","volume":"24 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Operational Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1016/j.ejor.2025.01.041","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

We explore the value of using operational sensor data to improve the risk assessment of service contracts that cover all maintenance-related costs during a fixed period. An initial estimate of the contract risk is determined by predicting the maintenance costs via a gradient-boosting machine based on the machine’s and contract’s characteristics observable at the onset of the contract period. We then periodically update this risk assessment based on operational sensor data observed throughout the contract period. These sensor data reveal operational machine usage that drives the maintenance risk. We validate our approach on a portfolio of about 4,000 full-service contracts of industrial equipment and show how dynamic sensor data improves risk differentiation.
求助全文
约1分钟内获得全文 求助全文
来源期刊
European Journal of Operational Research
European Journal of Operational Research 管理科学-运筹学与管理科学
CiteScore
11.90
自引率
9.40%
发文量
786
审稿时长
8.2 months
期刊介绍: The European Journal of Operational Research (EJOR) publishes high quality, original papers that contribute to the methodology of operational research (OR) and to the practice of decision making.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信