A predict-and-optimize approach to profit-driven churn prevention

IF 6 2区 管理学 Q1 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Nuria Gómez-Vargas , Sebastián Maldonado , Carla Vairetti
{"title":"A predict-and-optimize approach to profit-driven churn prevention","authors":"Nuria Gómez-Vargas ,&nbsp;Sebastián Maldonado ,&nbsp;Carla Vairetti","doi":"10.1016/j.ejor.2025.02.008","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we introduce a novel, profit-driven classification approach for churn prevention by framing the task of targeting customers for a retention campaign as a regret minimization problem within a predict-and-optimize framework. This is the first churn prevention model to utilize this approach. Our main objective is to leverage individual customer lifetime values (CLVs) to ensure that only the most valuable customers are targeted. In contrast, many profit-driven strategies focus on churn probabilities while considering average CLVs, often resulting in significant information loss due to data aggregation. Our proposed model aligns with the principles of the predict-and-optimize framework and can be efficiently solved using stochastic gradient descent methods. Results from 13 churn prediction datasets, sourced from an investment company, underscore the effectiveness of our approach, which achieves the highest average performance in terms of profit compared to other well-established strategies.</div></div>","PeriodicalId":55161,"journal":{"name":"European Journal of Operational Research","volume":"324 2","pages":"Pages 555-566"},"PeriodicalIF":6.0000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Operational Research","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377221725001110","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce a novel, profit-driven classification approach for churn prevention by framing the task of targeting customers for a retention campaign as a regret minimization problem within a predict-and-optimize framework. This is the first churn prevention model to utilize this approach. Our main objective is to leverage individual customer lifetime values (CLVs) to ensure that only the most valuable customers are targeted. In contrast, many profit-driven strategies focus on churn probabilities while considering average CLVs, often resulting in significant information loss due to data aggregation. Our proposed model aligns with the principles of the predict-and-optimize framework and can be efficiently solved using stochastic gradient descent methods. Results from 13 churn prediction datasets, sourced from an investment company, underscore the effectiveness of our approach, which achieves the highest average performance in terms of profit compared to other well-established strategies.
一个预测和优化的方法,以利润驱动的流失预防
在本文中,我们引入了一种新颖的,利润驱动的分类方法,通过将目标客户的保留活动作为预测和优化框架内的遗憾最小化问题的任务,来预防流失。这是第一个利用这种方法的流失预防模型。我们的主要目标是利用个人客户生命周期价值(clv)来确保只针对最有价值的客户。相比之下,许多以利润为导向的策略在考虑平均clv的同时关注客户流失概率,这通常会导致由于数据聚合而导致的重大信息丢失。我们提出的模型符合预测和优化框架的原理,可以使用随机梯度下降法有效地求解。来自一家投资公司的13个客户流失预测数据集的结果强调了我们方法的有效性,与其他成熟的策略相比,我们的方法在利润方面实现了最高的平均表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
European Journal of Operational Research
European Journal of Operational Research 管理科学-运筹学与管理科学
CiteScore
11.90
自引率
9.40%
发文量
786
审稿时长
8.2 months
期刊介绍: The European Journal of Operational Research (EJOR) publishes high quality, original papers that contribute to the methodology of operational research (OR) and to the practice of decision making.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信