Grid-Guided Sparse Laplacian Consensus for Robust Feature Matching

Yifan Xia;Jiayi Ma
{"title":"Grid-Guided Sparse Laplacian Consensus for Robust Feature Matching","authors":"Yifan Xia;Jiayi Ma","doi":"10.1109/TIP.2025.3539469","DOIUrl":null,"url":null,"abstract":"Feature matching is a fundamental concern widely employed in computer vision applications. This paper introduces a novel and efficacious method named Grid-guided Sparse Laplacian Consensus, rooted in the concept of smooth constraints. To address challenging scenes such as severe deformation and independent motions, we devise grid-based adaptive matching guidance to construct multiple transformations based on motion coherence. Specifically, we obtain a set of precise yet sparse seed correspondences through motion statistics, facilitating the generation of an adaptive number of candidate correspondence sets. In addition, we propose an innovative formulation grounded in graph Laplacian for correspondence pruning, wherein mapping function estimation is formulated as a Bayesian model. We solve this utilizing EM algorithm with seed correspondences as initialization for optimal convergence. Sparse approximation is leveraged to reduce the time-space burden. A comprehensive set of experiments are conducted to demonstrate the superiority of our method over other state-of-the-art methods in both robustness to serious deformations and generalizability for various descriptors, as well as generalizability to multi motions. Additionally, experiments in geometric estimation, image registration, loop closure detection, and visual localization highlight the significance of our method across diverse scenes for high-level tasks.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"34 ","pages":"1367-1381"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10891339/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Feature matching is a fundamental concern widely employed in computer vision applications. This paper introduces a novel and efficacious method named Grid-guided Sparse Laplacian Consensus, rooted in the concept of smooth constraints. To address challenging scenes such as severe deformation and independent motions, we devise grid-based adaptive matching guidance to construct multiple transformations based on motion coherence. Specifically, we obtain a set of precise yet sparse seed correspondences through motion statistics, facilitating the generation of an adaptive number of candidate correspondence sets. In addition, we propose an innovative formulation grounded in graph Laplacian for correspondence pruning, wherein mapping function estimation is formulated as a Bayesian model. We solve this utilizing EM algorithm with seed correspondences as initialization for optimal convergence. Sparse approximation is leveraged to reduce the time-space burden. A comprehensive set of experiments are conducted to demonstrate the superiority of our method over other state-of-the-art methods in both robustness to serious deformations and generalizability for various descriptors, as well as generalizability to multi motions. Additionally, experiments in geometric estimation, image registration, loop closure detection, and visual localization highlight the significance of our method across diverse scenes for high-level tasks.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信