Ben Adcock, Matthew J. Colbrook, Maksym Neyra-Nesterenko
{"title":"Restarts Subject to Approximate Sharpness: A Parameter-Free and Optimal Scheme For First-Order Methods","authors":"Ben Adcock, Matthew J. Colbrook, Maksym Neyra-Nesterenko","doi":"10.1007/s10208-024-09673-8","DOIUrl":null,"url":null,"abstract":"<p>Sharpness is an almost generic assumption in continuous optimization that bounds the distance from minima by objective function suboptimality. It facilitates the acceleration of first-order methods through <i>restarts</i>. However, sharpness involves problem-specific constants that are typically unknown, and restart schemes typically reduce convergence rates. Moreover, these schemes are challenging to apply in the presence of noise or with approximate model classes (e.g., in compressive imaging or learning problems), and they generally assume that the first-order method used produces feasible iterates. We consider the assumption of <i>approximate sharpness</i>, a generalization of sharpness that incorporates an unknown constant perturbation to the objective function error. This constant offers greater robustness (e.g., with respect to noise or relaxation of model classes) for finding approximate minimizers. By employing a new type of search over the unknown constants, we design a restart scheme that applies to general first-order methods and does not require the first-order method to produce feasible iterates. Our scheme maintains the same convergence rate as when the constants are known. The convergence rates we achieve for various first-order methods match the optimal rates or improve on previously established rates for a wide range of problems. We showcase our restart scheme in several examples and highlight potential future applications and developments of our framework and theory.</p>","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"13 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10208-024-09673-8","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Sharpness is an almost generic assumption in continuous optimization that bounds the distance from minima by objective function suboptimality. It facilitates the acceleration of first-order methods through restarts. However, sharpness involves problem-specific constants that are typically unknown, and restart schemes typically reduce convergence rates. Moreover, these schemes are challenging to apply in the presence of noise or with approximate model classes (e.g., in compressive imaging or learning problems), and they generally assume that the first-order method used produces feasible iterates. We consider the assumption of approximate sharpness, a generalization of sharpness that incorporates an unknown constant perturbation to the objective function error. This constant offers greater robustness (e.g., with respect to noise or relaxation of model classes) for finding approximate minimizers. By employing a new type of search over the unknown constants, we design a restart scheme that applies to general first-order methods and does not require the first-order method to produce feasible iterates. Our scheme maintains the same convergence rate as when the constants are known. The convergence rates we achieve for various first-order methods match the optimal rates or improve on previously established rates for a wide range of problems. We showcase our restart scheme in several examples and highlight potential future applications and developments of our framework and theory.
期刊介绍:
Foundations of Computational Mathematics (FoCM) will publish research and survey papers of the highest quality which further the understanding of the connections between mathematics and computation. The journal aims to promote the exploration of all fundamental issues underlying the creative tension among mathematics, computer science and application areas unencumbered by any external criteria such as the pressure for applications. The journal will thus serve an increasingly important and applicable area of mathematics. The journal hopes to further the understanding of the deep relationships between mathematical theory: analysis, topology, geometry and algebra, and the computational processes as they are evolving in tandem with the modern computer.
With its distinguished editorial board selecting papers of the highest quality and interest from the international community, FoCM hopes to influence both mathematics and computation. Relevance to applications will not constitute a requirement for the publication of articles.
The journal does not accept code for review however authors who have code/data related to the submission should include a weblink to the repository where the data/code is stored.