A continuous adjoint cut‐cell formulation for topology optimization of bi‐fluid heat exchangers

IF 4 3区 工程技术 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Nikolaos Galanos, Evangelos Papoutsis-Kiachagias, Kyriakos Giannakoglou
{"title":"A continuous adjoint cut‐cell formulation for topology optimization of bi‐fluid heat exchangers","authors":"Nikolaos Galanos, Evangelos Papoutsis-Kiachagias, Kyriakos Giannakoglou","doi":"10.1108/hff-08-2024-0642","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>This paper aims to present a topology optimization (TopO) method for designing heat exchangers (HEx) with two working fluids to be kept apart. The introduction of cut–cells gives rise to the cut-cell TopO method, which computes the optimal distribution of an artificial impermeability field and successfully overcomes the weaknesses of the standard density-based TopO (denTopO) by computing the fluid–solid interface (FSI) at each cycle. This allows to accurately solve the flow and conjugate heat transfer (CHT) problem by imposing exact boundary conditions on the computed FSI and results to correct performances computed without the need to re-evaluate the optimized solutions on a body-fitted grid.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>The elements of an artificial impermeability distribution field defined on a background grid act as the design variables and allow topological changes to take place. Post-processing them yields two fields indicating the location of the two flow streams inside the HEx. At each TopO cycle, the FSIs computed based on these two fields are used as the cutting surfaces of the cut-cell grid. On the so-computed grid, the incompressible Navier–Stokes equations, coupled with the Spalart–Allmaras turbulence model, and the temperature equation are solved. The derivatives of the objective and constraint functions with respect to the design variables of TopO are computed by the continuous adjoint method, using consistent discretization schemes devised thanks to the “Think Discrete – Do Continuous” (TDDC) adjoint methodology.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The effectiveness of the cut-cell–based TopO method for designing HEx is demonstrated in 2D parallel/counter flow and 3D counter flow HEx operating under both laminar and turbulent flow conditions. Compared to the standard denTopO, its ability to compute FSIs along which accurate boundary conditions are imposed, increases the accuracy of the flow solver, which usually leads to optimal, rather than sub-optimal, solutions that truly satisfy the imposed constraints.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>This work proposes a new/complete methodology for the TopO of two-fluid systems including CHT that relies on the cut-cell method. This successfully combines aspects from both TopO and Shape Optimization (ShpO) in a single framework thus overcoming the well-known downsides of standard denTopO regarding its accuracy or the need for a follow-up ShpO after TopO. Instead of adding the well-known Brinkman penalization terms into the flow equations, it computes the FSIs at each optimization cycle allowing the solution of the CHT problem on a cut-cell grid.</p><!--/ Abstract__block -->","PeriodicalId":14263,"journal":{"name":"International Journal of Numerical Methods for Heat & Fluid Flow","volume":"12 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Methods for Heat & Fluid Flow","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/hff-08-2024-0642","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose

This paper aims to present a topology optimization (TopO) method for designing heat exchangers (HEx) with two working fluids to be kept apart. The introduction of cut–cells gives rise to the cut-cell TopO method, which computes the optimal distribution of an artificial impermeability field and successfully overcomes the weaknesses of the standard density-based TopO (denTopO) by computing the fluid–solid interface (FSI) at each cycle. This allows to accurately solve the flow and conjugate heat transfer (CHT) problem by imposing exact boundary conditions on the computed FSI and results to correct performances computed without the need to re-evaluate the optimized solutions on a body-fitted grid.

Design/methodology/approach

The elements of an artificial impermeability distribution field defined on a background grid act as the design variables and allow topological changes to take place. Post-processing them yields two fields indicating the location of the two flow streams inside the HEx. At each TopO cycle, the FSIs computed based on these two fields are used as the cutting surfaces of the cut-cell grid. On the so-computed grid, the incompressible Navier–Stokes equations, coupled with the Spalart–Allmaras turbulence model, and the temperature equation are solved. The derivatives of the objective and constraint functions with respect to the design variables of TopO are computed by the continuous adjoint method, using consistent discretization schemes devised thanks to the “Think Discrete – Do Continuous” (TDDC) adjoint methodology.

Findings

The effectiveness of the cut-cell–based TopO method for designing HEx is demonstrated in 2D parallel/counter flow and 3D counter flow HEx operating under both laminar and turbulent flow conditions. Compared to the standard denTopO, its ability to compute FSIs along which accurate boundary conditions are imposed, increases the accuracy of the flow solver, which usually leads to optimal, rather than sub-optimal, solutions that truly satisfy the imposed constraints.

Originality/value

This work proposes a new/complete methodology for the TopO of two-fluid systems including CHT that relies on the cut-cell method. This successfully combines aspects from both TopO and Shape Optimization (ShpO) in a single framework thus overcoming the well-known downsides of standard denTopO regarding its accuracy or the need for a follow-up ShpO after TopO. Instead of adding the well-known Brinkman penalization terms into the flow equations, it computes the FSIs at each optimization cycle allowing the solution of the CHT problem on a cut-cell grid.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.50
自引率
11.90%
发文量
100
审稿时长
6-12 weeks
期刊介绍: The main objective of this international journal is to provide applied mathematicians, engineers and scientists engaged in computer-aided design and research in computational heat transfer and fluid dynamics, whether in academic institutions of industry, with timely and accessible information on the development, refinement and application of computer-based numerical techniques for solving problems in heat and fluid flow. - See more at: http://emeraldgrouppublishing.com/products/journals/journals.htm?id=hff#sthash.Kf80GRt8.dpuf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信