{"title":"Unfractionated heparin attenuated histone-induced pulmonary endothelial glycocalyx injury through Ang/Tie2 pathway.","authors":"Jia Yin, Yawen Chi, Danyan Liu, Xinghua Li, Xu Li","doi":"10.1186/s12950-025-00437-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study aimed to investigate the involvement of angiopoietin (Ang)/Tie2 pathway in mediating pulmonary endothelial glycocalyx injury in histone-induced acute lung injury in mice, and the protective mechanism of unfractionated heparin (UFH).</p><p><strong>Methods: </strong>Twenty-four male C57BL/6 mice (20-25 g), 8-12 weeks old, were randomly divided into control, histone, and histone + UFH groups. The histone (50 mg/kg) was administered via tail vein. UFH (400 U/kg) was administered 1 h after histone injection. The control group was administered by an equal amount of sterile saline solution. The lungs of all groups were harvested 4 h after the injection of histones or sterile saline.</p><p><strong>Results: </strong>UFH attenuated histone-induced lung histopathological changes and edema. UFH alleviated pulmonary endothelial injury and glycocalyx shedding by reducing histone-induced low expression of thrombomodulin (TM) and decreased lung syndecan-1 levels. UFH improved histone-induced low mRNA expression of TM, syndecan-1, Ang-1, Tie2 and high expression of heparinase (HPA), Ang-2.</p><p><strong>Conclusion: </strong>UFH may attenuate histone-induced lung injury and pulmonary endothelial glycocalyx degradation via the Ang/Tie2 pathway.</p>","PeriodicalId":56120,"journal":{"name":"Journal of Inflammation-London","volume":"22 1","pages":"9"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11834598/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inflammation-London","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12950-025-00437-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: This study aimed to investigate the involvement of angiopoietin (Ang)/Tie2 pathway in mediating pulmonary endothelial glycocalyx injury in histone-induced acute lung injury in mice, and the protective mechanism of unfractionated heparin (UFH).
Methods: Twenty-four male C57BL/6 mice (20-25 g), 8-12 weeks old, were randomly divided into control, histone, and histone + UFH groups. The histone (50 mg/kg) was administered via tail vein. UFH (400 U/kg) was administered 1 h after histone injection. The control group was administered by an equal amount of sterile saline solution. The lungs of all groups were harvested 4 h after the injection of histones or sterile saline.
Results: UFH attenuated histone-induced lung histopathological changes and edema. UFH alleviated pulmonary endothelial injury and glycocalyx shedding by reducing histone-induced low expression of thrombomodulin (TM) and decreased lung syndecan-1 levels. UFH improved histone-induced low mRNA expression of TM, syndecan-1, Ang-1, Tie2 and high expression of heparinase (HPA), Ang-2.
Conclusion: UFH may attenuate histone-induced lung injury and pulmonary endothelial glycocalyx degradation via the Ang/Tie2 pathway.
期刊介绍:
Journal of Inflammation welcomes research submissions on all aspects of inflammation.
The five classical symptoms of inflammation, namely redness (rubor), swelling (tumour), heat (calor), pain (dolor) and loss of function (functio laesa), are only part of the story. The term inflammation is taken to include the full range of underlying cellular and molecular mechanisms involved, not only in the production of the inflammatory responses but, more importantly in clinical terms, in the healing process as well. Thus the journal covers molecular, cellular, animal and clinical studies, and related aspects of pharmacology, such as anti-inflammatory drug development, trials and therapeutic developments. It also considers publication of negative findings.
Journal of Inflammation aims to become the leading online journal on inflammation and, as online journals replace printed ones over the next decade, the main open access inflammation journal. Open access guarantees a larger audience, and thus impact, than any restricted access equivalent, and increasingly so, as the escalating costs of printed journals puts them outside University budgets. The unrestricted access to research findings in inflammation aids in promoting dynamic and productive dialogue between industrial and academic members of the inflammation research community, which plays such an important part in the development of future generations of anti-inflammatory therapies.