{"title":"Evaluation of circulating glypican 4 as a novel biomarker in disease - A comprehensive review.","authors":"A Muendlein, A Leiherer, H Drexel","doi":"10.1007/s00109-025-02520-5","DOIUrl":null,"url":null,"abstract":"<p><p>Glypican 4 (GPC4), a member of the cell surface heparan sulfate proteoglycan family, plays a crucial role in regulating various cell signaling and developmental processes. Its ability to be released from the cell surface into the bloodstream through shedding makes it a promising blood-based biomarker in health and disease. In this context, circulating GPC4 has been initially proposed as an insulin-sensitizing adipokine being linked with various conditions of insulin resistance. In addition, serum levels of GPC4 can indicate glycocalyx shedding and associated pathophysiological states, such as systemic inflammation. Particularly in a morbid and elderly population, increased GPC4 concentrations may reflect general organ dysfunction and an advanced state of multimorbidity, showing a strong association with the prognosis of severe conditions such as heart failure or advanced cancer. This comprehensive review is the first to summarize the existing scientific knowledge on the role of circulating GPC4 as a novel diagnostic and prognostic biomarker across different pathologic conditions. We also discuss in detail the putative underlying pathophysiological mechanisms behind these findings.</p>","PeriodicalId":50127,"journal":{"name":"Journal of Molecular Medicine-Jmm","volume":" ","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Medicine-Jmm","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00109-025-02520-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Glypican 4 (GPC4), a member of the cell surface heparan sulfate proteoglycan family, plays a crucial role in regulating various cell signaling and developmental processes. Its ability to be released from the cell surface into the bloodstream through shedding makes it a promising blood-based biomarker in health and disease. In this context, circulating GPC4 has been initially proposed as an insulin-sensitizing adipokine being linked with various conditions of insulin resistance. In addition, serum levels of GPC4 can indicate glycocalyx shedding and associated pathophysiological states, such as systemic inflammation. Particularly in a morbid and elderly population, increased GPC4 concentrations may reflect general organ dysfunction and an advanced state of multimorbidity, showing a strong association with the prognosis of severe conditions such as heart failure or advanced cancer. This comprehensive review is the first to summarize the existing scientific knowledge on the role of circulating GPC4 as a novel diagnostic and prognostic biomarker across different pathologic conditions. We also discuss in detail the putative underlying pathophysiological mechanisms behind these findings.
期刊介绍:
The Journal of Molecular Medicine publishes original research articles and review articles that range from basic findings in mechanisms of disease pathogenesis to therapy. The focus includes all human diseases, including but not limited to:
Aging, angiogenesis, autoimmune diseases as well as other inflammatory diseases, cancer, cardiovascular diseases, development and differentiation, endocrinology, gastrointestinal diseases and hepatology, genetics and epigenetics, hematology, hypoxia research, immunology, infectious diseases, metabolic disorders, neuroscience of diseases, -omics based disease research, regenerative medicine, and stem cell research.
Studies solely based on cell lines will not be considered. Studies that are based on model organisms will be considered as long as they are directly relevant to human disease.