Wenyi Chang, Kaiying Feng, Peng Zhou, Deao Gong, Ke Wang, Ailong Huang, Kai Wang, Ni Tang
{"title":"SPOP Suppresses Hepatocellular Carcinoma Growth and Metastasis by Ubiquitination and Proteasomal Degradation of TRAF6","authors":"Wenyi Chang, Kaiying Feng, Peng Zhou, Deao Gong, Ke Wang, Ailong Huang, Kai Wang, Ni Tang","doi":"10.1111/cas.70025","DOIUrl":null,"url":null,"abstract":"<p>Tumor necrosis factor receptor-associated factor-6 (TRAF6) is a well-established upstream regulator of the IKK complex, essential for the modulation of the NF-κB (nuclear factor kappa B) signaling pathway. Aberrant activation of TRAF6 has been strongly implicated in the pathogenesis of various cancers, including hepatocellular carcinoma (HCC). The speckle type BTB/POZ protein (SPOP), an E3 ubiquitin ligase substrate-binding adapter, constitutes a significant component of the CUL3/SPOP/RBX1 complex, which is closely linked to tumorigenesis. In this study, we demonstrated that the E3 ubiquitin ligase SPOP shielded TRAF6 from proteasomal degradation, leading to the hyperactivation of the NF-κB pathway. Notably, a liver cancer-associated S119N mutation in SPOP resulted in a failure to mediate the ubiquitination and subsequent degradation of TRAF6. Moreover, both gain-of-function and loss-of-function experiments revealed that SPOP inhibits the proliferation and invasion of HCC cells through the TRAF6-NF-κB axis in vitro <i>and</i> in vivo. Taken together, our findings elucidate the underpinning mechanism by which SPOP negatively regulates the stability of the TRAF6 oncoprotein, thus offering a new therapeutic target for HCC intervention.</p>","PeriodicalId":9580,"journal":{"name":"Cancer Science","volume":"116 5","pages":"1295-1307"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cas.70025","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Science","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cas.70025","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Tumor necrosis factor receptor-associated factor-6 (TRAF6) is a well-established upstream regulator of the IKK complex, essential for the modulation of the NF-κB (nuclear factor kappa B) signaling pathway. Aberrant activation of TRAF6 has been strongly implicated in the pathogenesis of various cancers, including hepatocellular carcinoma (HCC). The speckle type BTB/POZ protein (SPOP), an E3 ubiquitin ligase substrate-binding adapter, constitutes a significant component of the CUL3/SPOP/RBX1 complex, which is closely linked to tumorigenesis. In this study, we demonstrated that the E3 ubiquitin ligase SPOP shielded TRAF6 from proteasomal degradation, leading to the hyperactivation of the NF-κB pathway. Notably, a liver cancer-associated S119N mutation in SPOP resulted in a failure to mediate the ubiquitination and subsequent degradation of TRAF6. Moreover, both gain-of-function and loss-of-function experiments revealed that SPOP inhibits the proliferation and invasion of HCC cells through the TRAF6-NF-κB axis in vitro and in vivo. Taken together, our findings elucidate the underpinning mechanism by which SPOP negatively regulates the stability of the TRAF6 oncoprotein, thus offering a new therapeutic target for HCC intervention.
期刊介绍:
Cancer Science (formerly Japanese Journal of Cancer Research) is a monthly publication of the Japanese Cancer Association. First published in 1907, the Journal continues to publish original articles, editorials, and letters to the editor, describing original research in the fields of basic, translational and clinical cancer research. The Journal also accepts reports and case reports.
Cancer Science aims to present highly significant and timely findings that have a significant clinical impact on oncologists or that may alter the disease concept of a tumor. The Journal will not publish case reports that describe a rare tumor or condition without new findings to be added to previous reports; combination of different tumors without new suggestive findings for oncological research; remarkable effect of already known treatments without suggestive data to explain the exceptional result. Review articles may also be published.