Boning Zeng, Chao Sun, Nan Li, Qiuling Chen, Manni Rao, Kai Li, Xiaodi Liu, Shouxia Xie, Jiwu Cheng, Shaoxiang Wang, Xiao Wang
{"title":"NEK2 Control of Esophageal Squamous Cell Carcinoma Growth Based on Circadian Oscillation","authors":"Boning Zeng, Chao Sun, Nan Li, Qiuling Chen, Manni Rao, Kai Li, Xiaodi Liu, Shouxia Xie, Jiwu Cheng, Shaoxiang Wang, Xiao Wang","doi":"10.1111/cas.16461","DOIUrl":null,"url":null,"abstract":"<p>Esophageal squamous cell carcinoma (ESCC) is a globally prevalent malignancy known for its aggressive nature and unfavorable outcomes. Identifying new biomarkers is crucial for the early detection and improved prognostication of ESCC. The circadian clock and NIMA-related kinase 2 (NEK2) are pivotal in cancer development. While the impact of circadian rhythm disruptions on ESCC progression is evident, the specific contribution of NEK2 to these changes is not well understood. Our study discovered NEK2 as a consistently differentially expressed gene across multiple datasets, with elevated expression in ESCC tissues. Notably, NEK2 overexpression was linked to increased ESCC cell proliferation, whereas its inhibition led to reduced cell growth and proliferation. Pathway analyses, including KEGG and Gene Set Enrichment Analysis (GSEA), indicated NEK2's association with established pathways like the cell cycle, and intriguingly, identified the circadian rhythm as a novel pathway influenced by NEK2. RNA sequencing data demonstrated NEK2's circadian rhythmic expression, and subsequent in vitro experiments confirmed its oscillation in synchronized ESCC cells. Moreover, we found a positive correlation between the efficacy of the NEK2 inhibitor INH6 and NEK2 expression levels in ESCC. In conclusion, our findings position NEK2 as a time-dependent oncogene and a potential biomarker in ESCC, highlighting its role in both tumorigenesis and the circadian rhythm.</p>","PeriodicalId":9580,"journal":{"name":"Cancer Science","volume":"116 5","pages":"1282-1294"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cas.16461","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Science","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cas.16461","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Esophageal squamous cell carcinoma (ESCC) is a globally prevalent malignancy known for its aggressive nature and unfavorable outcomes. Identifying new biomarkers is crucial for the early detection and improved prognostication of ESCC. The circadian clock and NIMA-related kinase 2 (NEK2) are pivotal in cancer development. While the impact of circadian rhythm disruptions on ESCC progression is evident, the specific contribution of NEK2 to these changes is not well understood. Our study discovered NEK2 as a consistently differentially expressed gene across multiple datasets, with elevated expression in ESCC tissues. Notably, NEK2 overexpression was linked to increased ESCC cell proliferation, whereas its inhibition led to reduced cell growth and proliferation. Pathway analyses, including KEGG and Gene Set Enrichment Analysis (GSEA), indicated NEK2's association with established pathways like the cell cycle, and intriguingly, identified the circadian rhythm as a novel pathway influenced by NEK2. RNA sequencing data demonstrated NEK2's circadian rhythmic expression, and subsequent in vitro experiments confirmed its oscillation in synchronized ESCC cells. Moreover, we found a positive correlation between the efficacy of the NEK2 inhibitor INH6 and NEK2 expression levels in ESCC. In conclusion, our findings position NEK2 as a time-dependent oncogene and a potential biomarker in ESCC, highlighting its role in both tumorigenesis and the circadian rhythm.
期刊介绍:
Cancer Science (formerly Japanese Journal of Cancer Research) is a monthly publication of the Japanese Cancer Association. First published in 1907, the Journal continues to publish original articles, editorials, and letters to the editor, describing original research in the fields of basic, translational and clinical cancer research. The Journal also accepts reports and case reports.
Cancer Science aims to present highly significant and timely findings that have a significant clinical impact on oncologists or that may alter the disease concept of a tumor. The Journal will not publish case reports that describe a rare tumor or condition without new findings to be added to previous reports; combination of different tumors without new suggestive findings for oncological research; remarkable effect of already known treatments without suggestive data to explain the exceptional result. Review articles may also be published.