[Artificial intelligence and machine learning in auscultation: prospects of the project DigitaLung].

IF 1.2 Q4 RESPIRATORY SYSTEM
Pneumologie Pub Date : 2025-03-01 Epub Date: 2025-02-17 DOI:10.1055/a-2507-1486
Luca Hilberink, Pia Wehage, Milad Pashai Fakhri, Svenja Gaedcke, David DeLuca, Patricia Mattis, Jessica Rademacher
{"title":"[Artificial intelligence and machine learning in auscultation: prospects of the project DigitaLung].","authors":"Luca Hilberink, Pia Wehage, Milad Pashai Fakhri, Svenja Gaedcke, David DeLuca, Patricia Mattis, Jessica Rademacher","doi":"10.1055/a-2507-1486","DOIUrl":null,"url":null,"abstract":"<p><p>Auscultation is one of the key medical skills in physical examination. The main problem with auscultation is the lack of objectivity of the findings and great dependence on the experience of the examiner. Auscultation using machine learning and neural networks promises great potential for solving these problems in clinical practice.A selective search for studies in PubMed was carried out, which revealed the possibilities of machine learning in medical diagnostics.In all the studies identified, significant differences were shown between the respective test groups in favour of artificial intelligence (AI). In addition to the positive study results, the limitations of AI could also be analysed and critically scrutinised.Medical research in the field of artificial intelligence is still in its infancy. The prospects and limitations of AI must be further investigated and require close attention in the collaboration between clinicians, scientists and AI experts. Publicly funded projects such as DigitaLung (a digital auscultation system for the differential diagnosis of lung diseases using machine learning), which aims to improve lung auscultation using AI, will help to unlock the diagnostic benefits of AI for patient care and could improve care in the future.</p>","PeriodicalId":20197,"journal":{"name":"Pneumologie","volume":" ","pages":"229-235"},"PeriodicalIF":1.2000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pneumologie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/a-2507-1486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/17 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 0

Abstract

Auscultation is one of the key medical skills in physical examination. The main problem with auscultation is the lack of objectivity of the findings and great dependence on the experience of the examiner. Auscultation using machine learning and neural networks promises great potential for solving these problems in clinical practice.A selective search for studies in PubMed was carried out, which revealed the possibilities of machine learning in medical diagnostics.In all the studies identified, significant differences were shown between the respective test groups in favour of artificial intelligence (AI). In addition to the positive study results, the limitations of AI could also be analysed and critically scrutinised.Medical research in the field of artificial intelligence is still in its infancy. The prospects and limitations of AI must be further investigated and require close attention in the collaboration between clinicians, scientists and AI experts. Publicly funded projects such as DigitaLung (a digital auscultation system for the differential diagnosis of lung diseases using machine learning), which aims to improve lung auscultation using AI, will help to unlock the diagnostic benefits of AI for patient care and could improve care in the future.

【听诊中的人工智能与机器学习:DigitaLung项目展望】。
听诊是体格检查的关键医学技能之一。听诊的主要问题是听诊结果缺乏客观性,很大程度上取决于听诊者的经验。使用机器学习和神经网络的听诊有望在临床实践中解决这些问题。我们对PubMed上的研究进行了选择性搜索,揭示了机器学习在医学诊断中的可能性。在所确定的所有研究中,支持人工智能(AI)的各个测试组之间显示出显著差异。除了积极的研究结果,人工智能的局限性也可以被分析和严格审查。人工智能领域的医学研究仍处于起步阶段。人工智能的前景和局限性必须进一步研究,并需要在临床医生、科学家和人工智能专家之间的合作中密切关注。公共资助的项目,如DigitaLung(一种利用机器学习进行肺部疾病鉴别诊断的数字听诊系统),旨在利用人工智能改善肺部听诊,将有助于释放人工智能在患者护理方面的诊断优势,并可能在未来改善护理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pneumologie
Pneumologie RESPIRATORY SYSTEM-
CiteScore
1.80
自引率
16.70%
发文量
416
期刊介绍: Organ der Deutschen Gesellschaft für Pneumologie DGP Organ des Deutschen Zentralkomitees zur Bekämpfung der Tuberkulose DZK Organ des Bundesverbandes der Pneumologen BdP Fachärzte für Lungen- und Bronchialheilkunde, Pneumologen und Allergologen
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信