Jennifer H Nguyen, Melissa A Curtis, Ali S Imami, William G Ryan, Khaled Alganem, Kari L Neifer, Nilanjana Saferin, Charlotte N Nawor, Brian P Kistler, Gary W Miller, Rammohan Shukla, Robert E McCullumsmith, James P Burkett
{"title":"Developmental pyrethroid exposure disrupts molecular pathways for MAP kinase and circadian rhythms in mouse brain.","authors":"Jennifer H Nguyen, Melissa A Curtis, Ali S Imami, William G Ryan, Khaled Alganem, Kari L Neifer, Nilanjana Saferin, Charlotte N Nawor, Brian P Kistler, Gary W Miller, Rammohan Shukla, Robert E McCullumsmith, James P Burkett","doi":"10.1152/physiolgenomics.00033.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Neurodevelopmental disorders (NDDs) are a category of pervasive disorders of the developing nervous system with few or no recognized biomarkers. A significant portion of the risk for NDDs, including attention deficit hyperactivity disorder (ADHD), is contributed by the environment, and exposure to pyrethroid pesticides during pregnancy has been identified as a potential risk factor for NDD in the unborn child. We recently showed that low-dose developmental exposure to the pyrethroid pesticide deltamethrin in mice causes male-biased changes to ADHD- and NDD-relevant behaviors as well as the striatal dopamine system. Here, we used an integrated multiomics approach to determine the broadest possible set of biological changes in the mouse brain caused by developmental pyrethroid exposure (DPE). Using a litter-based, split-sample design, we exposed mouse dams during pregnancy and lactation to deltamethrin (3 mg/kg or vehicle every 3 days) at a concentration well below the EPA-determined benchmark dose used for regulatory guidance. We raised male offspring to adulthood, euthanized them, and pulverized and divided whole brain samples for split-sample transcriptomics, kinomics, and multiomics integration. Transcriptome analysis revealed alterations to multiple canonical clock genes, and kinome analysis revealed changes in the activity of multiple kinases involved in synaptic plasticity, including the mitogen-activated protein (MAP) kinase ERK. Multiomics integration revealed a dysregulated protein-protein interaction network containing primary clusters for MAP kinase cascades, regulation of apoptosis, and synaptic function. These results demonstrate that DPE causes a multimodal biophenotype in the brain relevant to ADHD and identifies new potential mechanisms of action.<b>NEW & NOTEWORTHY</b> Here, we provide the first evidence that low-dose developmental exposure to a pyrethroid pesticide, deltamethrin, results in molecular disruptions in the adult mouse brain in pathways regulating circadian rhythms and neuronal growth (MAP kinase). This same exposure causes a neurodevelopmental disorder (NDD)-relevant behavioral change in adult mice, making these findings relevant to the prevention of NDDs.</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":" ","pages":"240-253"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/physiolgenomics.00033.2024","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/17 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Neurodevelopmental disorders (NDDs) are a category of pervasive disorders of the developing nervous system with few or no recognized biomarkers. A significant portion of the risk for NDDs, including attention deficit hyperactivity disorder (ADHD), is contributed by the environment, and exposure to pyrethroid pesticides during pregnancy has been identified as a potential risk factor for NDD in the unborn child. We recently showed that low-dose developmental exposure to the pyrethroid pesticide deltamethrin in mice causes male-biased changes to ADHD- and NDD-relevant behaviors as well as the striatal dopamine system. Here, we used an integrated multiomics approach to determine the broadest possible set of biological changes in the mouse brain caused by developmental pyrethroid exposure (DPE). Using a litter-based, split-sample design, we exposed mouse dams during pregnancy and lactation to deltamethrin (3 mg/kg or vehicle every 3 days) at a concentration well below the EPA-determined benchmark dose used for regulatory guidance. We raised male offspring to adulthood, euthanized them, and pulverized and divided whole brain samples for split-sample transcriptomics, kinomics, and multiomics integration. Transcriptome analysis revealed alterations to multiple canonical clock genes, and kinome analysis revealed changes in the activity of multiple kinases involved in synaptic plasticity, including the mitogen-activated protein (MAP) kinase ERK. Multiomics integration revealed a dysregulated protein-protein interaction network containing primary clusters for MAP kinase cascades, regulation of apoptosis, and synaptic function. These results demonstrate that DPE causes a multimodal biophenotype in the brain relevant to ADHD and identifies new potential mechanisms of action.NEW & NOTEWORTHY Here, we provide the first evidence that low-dose developmental exposure to a pyrethroid pesticide, deltamethrin, results in molecular disruptions in the adult mouse brain in pathways regulating circadian rhythms and neuronal growth (MAP kinase). This same exposure causes a neurodevelopmental disorder (NDD)-relevant behavioral change in adult mice, making these findings relevant to the prevention of NDDs.
期刊介绍:
The Physiological Genomics publishes original papers, reviews and rapid reports in a wide area of research focused on uncovering the links between genes and physiology at all levels of biological organization. Articles on topics ranging from single genes to the whole genome and their links to the physiology of humans, any model organism, organ, tissue or cell are welcome. Areas of interest include complex polygenic traits preferably of importance to human health and gene-function relationships of disease processes. Specifically, the Journal has dedicated Sections focused on genome-wide association studies (GWAS) to function, cardiovascular, renal, metabolic and neurological systems, exercise physiology, pharmacogenomics, clinical, translational and genomics for precision medicine, comparative and statistical genomics and databases. For further details on research themes covered within these Sections, please refer to the descriptions given under each Section.