Influencing hair regrowth with EGCG by targeting glycogen synthase kinase-3β activity: a molecular dynamics study.

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Hamid Raza Moqaddasi, Anshul Singh, Shoma Mukherjee, Fatima Rezai, Arti Gupta, Saurabh Srivastava, Sathvik Belagodu Sridhar, Irfan Ahmad, Vivek Dhar Dwivedi, Sandeep Kumar
{"title":"Influencing hair regrowth with EGCG by targeting glycogen synthase kinase-3β activity: a molecular dynamics study.","authors":"Hamid Raza Moqaddasi, Anshul Singh, Shoma Mukherjee, Fatima Rezai, Arti Gupta, Saurabh Srivastava, Sathvik Belagodu Sridhar, Irfan Ahmad, Vivek Dhar Dwivedi, Sandeep Kumar","doi":"10.1080/10799893.2025.2465240","DOIUrl":null,"url":null,"abstract":"<p><p>Hair follicle growth process through several well-organized stages with specific input by several signaling pathways including Wnt/β-catenin and Sonic Hedgehog with GSK3β in this process. As such, this research focus on investigating the efficacy of molecules that are able to inhibit GSK3β action in inducing hair regrowth. Applying computational techniques, three compounds NMN, Resveratrol and EGCG were analyzed for their GSK3β inhibition. It was established that EGCG has the highest values of molecular docking scores and, in the case of the stability criteria such as RMSD and RMSF, presented the most stable dynamic simulation. EGCG has shown considerable TEMPORAL STABILITY with GSK3β in the complex, because over a period of 200 nanoseconds the molecules remained bound through hydrogen bonds and hydrophobic contacts. As confirmed by PCA, the largest conformational changes in GSK3β suggest significant inhibitory interaction. Out of all the studied compounds, EGCG turns out to be the most potent GSK3β inhibitor for hair regrowth purposes. The result obtained from the molecular dynamics simulation indicates that EGCG might exert a favorable impact to extract signaling pathways related with hair follicle cycling which is a significant objective. These outcome sets the phase for further experimental testing to discover the potential of EGCG in the treatment of alopecia.</p>","PeriodicalId":16962,"journal":{"name":"Journal of Receptors and Signal Transduction","volume":" ","pages":"1-12"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Receptors and Signal Transduction","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10799893.2025.2465240","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Hair follicle growth process through several well-organized stages with specific input by several signaling pathways including Wnt/β-catenin and Sonic Hedgehog with GSK3β in this process. As such, this research focus on investigating the efficacy of molecules that are able to inhibit GSK3β action in inducing hair regrowth. Applying computational techniques, three compounds NMN, Resveratrol and EGCG were analyzed for their GSK3β inhibition. It was established that EGCG has the highest values of molecular docking scores and, in the case of the stability criteria such as RMSD and RMSF, presented the most stable dynamic simulation. EGCG has shown considerable TEMPORAL STABILITY with GSK3β in the complex, because over a period of 200 nanoseconds the molecules remained bound through hydrogen bonds and hydrophobic contacts. As confirmed by PCA, the largest conformational changes in GSK3β suggest significant inhibitory interaction. Out of all the studied compounds, EGCG turns out to be the most potent GSK3β inhibitor for hair regrowth purposes. The result obtained from the molecular dynamics simulation indicates that EGCG might exert a favorable impact to extract signaling pathways related with hair follicle cycling which is a significant objective. These outcome sets the phase for further experimental testing to discover the potential of EGCG in the treatment of alopecia.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Receptors and Signal Transduction
Journal of Receptors and Signal Transduction 生物-生化与分子生物学
CiteScore
6.60
自引率
0.00%
发文量
19
审稿时长
>12 weeks
期刊介绍: Journal of Receptors and Signal Tranduction is included in the following abstracting and indexing services: BIOBASE; Biochemistry and Biophysics Citation Index; Biological Abstracts; BIOSIS Full Coverage Shared; BIOSIS Previews; Biotechnology Abstracts; Current Contents/Life Sciences; Derwent Chimera; Derwent Drug File; EMBASE; EMBIOLOGY; Journal Citation Reports/ Science Edition; PubMed/MedLine; Science Citation Index; SciSearch; SCOPUS; SIIC.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信