Dimensionality reduction for visualizing spatially resolved profiling data using SpaSNE.

IF 11.8 2区 生物学 Q1 MULTIDISCIPLINARY SCIENCES
Yuansheng Zhou, Chen Tang, Xue Xiao, Xiaowei Zhan, Tao Wang, Guanghua Xiao, Lin Xu
{"title":"Dimensionality reduction for visualizing spatially resolved profiling data using SpaSNE.","authors":"Yuansheng Zhou, Chen Tang, Xue Xiao, Xiaowei Zhan, Tao Wang, Guanghua Xiao, Lin Xu","doi":"10.1093/gigascience/giaf002","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Spatially resolved profiling technologies to quantify transcriptomes, epigenomes, and proteomes have been emerging as groundbreaking methods for comprehensive molecular characterizations. Dimensionality reduction and visualization is an essential step to analyze and interpret spatially resolved profiling data. However, state-of-the-art dimensionality reduction methods for single-cell sequencing data, such as the t-distributed stochastic neighbor embedding (t-SNE) and uniform manifold approximation and projection (UMAP), were not tailored for spatially resolved profiling data.</p><p><strong>Results: </strong>Here we developed a spatially resolved t-SNE (SpaSNE) method to integrate both spatial and molecular information. We applied it to a variety of public spatially resolved profiling datasets that were generated from 3 experimental platforms and consisted of cells from different diseases, tissues, and cell types. To compare the performances of SpaSNE, t-SNE, and UMAP, we applied them to 4 spatially resolved profiling datasets obtained from 3 distinct experimental platforms (Visium, STARmap, and MERFISH) on both diseased and normal tissues. Comparisons between SpaSNE and these state-of-the-art approaches reveal that SpaSNE achieves more accurate and meaningful visualization that better elucidates the underlying spatial and molecular data structures.</p><p><strong>Conclusions: </strong>This work demonstrates the broad application of SpaSNE for reliable and robust interpretation of cell types based on both molecular and spatial information, which can set the foundation for many subsequent analysis steps, such as differential gene expression and trajectory or pseudotime analysis on the spatially resolved profiling data.</p>","PeriodicalId":12581,"journal":{"name":"GigaScience","volume":"14 ","pages":""},"PeriodicalIF":11.8000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11831803/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GigaScience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gigascience/giaf002","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Spatially resolved profiling technologies to quantify transcriptomes, epigenomes, and proteomes have been emerging as groundbreaking methods for comprehensive molecular characterizations. Dimensionality reduction and visualization is an essential step to analyze and interpret spatially resolved profiling data. However, state-of-the-art dimensionality reduction methods for single-cell sequencing data, such as the t-distributed stochastic neighbor embedding (t-SNE) and uniform manifold approximation and projection (UMAP), were not tailored for spatially resolved profiling data.

Results: Here we developed a spatially resolved t-SNE (SpaSNE) method to integrate both spatial and molecular information. We applied it to a variety of public spatially resolved profiling datasets that were generated from 3 experimental platforms and consisted of cells from different diseases, tissues, and cell types. To compare the performances of SpaSNE, t-SNE, and UMAP, we applied them to 4 spatially resolved profiling datasets obtained from 3 distinct experimental platforms (Visium, STARmap, and MERFISH) on both diseased and normal tissues. Comparisons between SpaSNE and these state-of-the-art approaches reveal that SpaSNE achieves more accurate and meaningful visualization that better elucidates the underlying spatial and molecular data structures.

Conclusions: This work demonstrates the broad application of SpaSNE for reliable and robust interpretation of cell types based on both molecular and spatial information, which can set the foundation for many subsequent analysis steps, such as differential gene expression and trajectory or pseudotime analysis on the spatially resolved profiling data.

使用SpaSNE可视化空间解析剖面数据的降维方法。
背景:用于量化转录组、表观基因组和蛋白质组的空间分辨分析技术已经成为综合分子表征的突破性方法。降维和可视化是分析和解释空间解析剖面数据的重要步骤。然而,最先进的单细胞测序数据降维方法,如t分布随机邻居嵌入(t-SNE)和均匀流形逼近和投影(UMAP),并不适合空间分辨剖面数据。结果:我们建立了一种空间分辨t-SNE (SpaSNE)方法来整合空间和分子信息。我们将其应用于从3个实验平台生成的各种公共空间分辨分析数据集,这些数据集由来自不同疾病、组织和细胞类型的细胞组成。为了比较SpaSNE、t-SNE和UMAP的性能,我们将它们应用于从3个不同的实验平台(Visium、STARmap和MERFISH)获得的4个空间分辨分析数据集,包括病变组织和正常组织。SpaSNE与这些最先进的方法之间的比较表明,SpaSNE实现了更准确和有意义的可视化,更好地阐明了潜在的空间和分子数据结构。结论:这项工作证明了SpaSNE在基于分子和空间信息的细胞类型可靠和稳健解释方面的广泛应用,这可以为许多后续分析步骤奠定基础,例如对空间解析谱数据的差异基因表达和轨迹或伪时间分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
GigaScience
GigaScience MULTIDISCIPLINARY SCIENCES-
CiteScore
15.50
自引率
1.10%
发文量
119
审稿时长
1 weeks
期刊介绍: GigaScience seeks to transform data dissemination and utilization in the life and biomedical sciences. As an online open-access open-data journal, it specializes in publishing "big-data" studies encompassing various fields. Its scope includes not only "omic" type data and the fields of high-throughput biology currently serviced by large public repositories, but also the growing range of more difficult-to-access data, such as imaging, neuroscience, ecology, cohort data, systems biology and other new types of large-scale shareable data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信