{"title":"METTL1 Enhances RRP9 mRNA Stability Through m7G Modification to Drive Colorectal Tumorigenesis.","authors":"Nan Li, Ying Jing, Long Xu, Maonan Wang","doi":"10.1002/mc.23892","DOIUrl":null,"url":null,"abstract":"<p><p>METTL1, a well-established RNA methyltransferase for the N(7)-methylguanosine (m7G) methylation modification, is responsible for human tumorigenesis. Here, we aimed to examine the activity and molecular determinants of METTL1 in colorectal cancer (CRC) development. METTL1 and ribosomal RNA processing 9 (RRP9) mRNA analysis was performed by quantitative PCR. Protein expression was detected by immunoblotting and immunohistochemistry (IHC). Cell sphere formation, invasion, and proliferation were assessed by sphere formation, transwell, and MTT assays, respectively. Cell migration was tested by transwell and wound healing assays. Subcutaneous xenografts were produced to analyze the role in vivo. The influence of METTL1 in m7G methylation and stability of RRP9 mRNA was evaluated by methylated immunoprecipitation (MeRIP) assay and Actinomycin D (Act D) treatment, respectively. METTL1 was highly expressed in CRC tumors and cell lines. METTL1 depletion suppressed CRC cell proliferation, invasiveness, migratory ability, and sphere formation potential in vitro, while increased METTL1 expression had opposite effects. METTL1 positively correlated with RRP9 expression in CRC. Mechanistically, METTL1 promoted RRP9 mRNA stability by mediating its m7G methylation, and METTL1 regulated the PI3K/AKT signaling by RRP9. Increased RRP9 expression partially reversed the suppressive effects of METTL1 depletion on CRC cell phenotypes in vitro. METTL1 depletion impeded the growth of HCT-116 subcutaneous xenografts in vivo by RRP9. Our observations identified METTL1 as a crucial protumorigenic factor to drive growth, metastasis, and stemness of CRC cells through RRP9, offering new targets for combating CRC.</p>","PeriodicalId":19003,"journal":{"name":"Molecular Carcinogenesis","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Carcinogenesis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mc.23892","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
METTL1, a well-established RNA methyltransferase for the N(7)-methylguanosine (m7G) methylation modification, is responsible for human tumorigenesis. Here, we aimed to examine the activity and molecular determinants of METTL1 in colorectal cancer (CRC) development. METTL1 and ribosomal RNA processing 9 (RRP9) mRNA analysis was performed by quantitative PCR. Protein expression was detected by immunoblotting and immunohistochemistry (IHC). Cell sphere formation, invasion, and proliferation were assessed by sphere formation, transwell, and MTT assays, respectively. Cell migration was tested by transwell and wound healing assays. Subcutaneous xenografts were produced to analyze the role in vivo. The influence of METTL1 in m7G methylation and stability of RRP9 mRNA was evaluated by methylated immunoprecipitation (MeRIP) assay and Actinomycin D (Act D) treatment, respectively. METTL1 was highly expressed in CRC tumors and cell lines. METTL1 depletion suppressed CRC cell proliferation, invasiveness, migratory ability, and sphere formation potential in vitro, while increased METTL1 expression had opposite effects. METTL1 positively correlated with RRP9 expression in CRC. Mechanistically, METTL1 promoted RRP9 mRNA stability by mediating its m7G methylation, and METTL1 regulated the PI3K/AKT signaling by RRP9. Increased RRP9 expression partially reversed the suppressive effects of METTL1 depletion on CRC cell phenotypes in vitro. METTL1 depletion impeded the growth of HCT-116 subcutaneous xenografts in vivo by RRP9. Our observations identified METTL1 as a crucial protumorigenic factor to drive growth, metastasis, and stemness of CRC cells through RRP9, offering new targets for combating CRC.
期刊介绍:
Molecular Carcinogenesis publishes articles describing discoveries in basic and clinical science of the mechanisms involved in chemical-, environmental-, physical (e.g., radiation, trauma)-, infection and inflammation-associated cancer development, basic mechanisms of cancer prevention and therapy, the function of oncogenes and tumors suppressors, and the role of biomarkers for cancer risk prediction, molecular diagnosis and prognosis.