Modeling amyotrophic lateral sclerosis with amniotic membrane-derived mesenchymal stem cells: A novel approach for disease modeling

IF 3.3 3区 生物学 Q3 CELL BIOLOGY
B.S. Soumya , Naisarg Gamit , Manasi Patil , V.P. Shreenidhi , Arun Dharmarajan , Sudha Warrier
{"title":"Modeling amyotrophic lateral sclerosis with amniotic membrane-derived mesenchymal stem cells: A novel approach for disease modeling","authors":"B.S. Soumya ,&nbsp;Naisarg Gamit ,&nbsp;Manasi Patil ,&nbsp;V.P. Shreenidhi ,&nbsp;Arun Dharmarajan ,&nbsp;Sudha Warrier","doi":"10.1016/j.yexcr.2025.114449","DOIUrl":null,"url":null,"abstract":"<div><div>Advancement of therapeutics for neurodegenerative diseases like amyotrophic lateral sclerosis (ALS) has been predominantly hampered by the dearth of relevant disease models. Despite numerous animal models, significant challenges remain in correlating these with human disease complexities. In this study, the ALS model was created using amniotic membrane-derived mesenchymal stem cells (AM-MSCs) which were differentiated into motor neurons (MN) with specific MN induction media and transiently transfected with mutated human SOD1 G93A plasmid to induce ALS-like condition. Characterization included gene expression analysis, immunocytochemistry, flow cytometry, and Western blot. Functional assays assessed the extent of degeneration and model efficiency. AM-MSCs demonstrated multipotency and were positive for MSC markers. Upon differentiation, the expression of MN markers like MNX1, Olig2, and ChAT were found to be elevated. SOD1 G93A overexpression, downregulated MN markers, upregulated NURR1 gene, reduced acetylcholine (ACh), reduced glutathione, and elevated oxidative stress markers. This robust <em>in-vitro</em> ALS model derived from AM-MSCs offers an alternative to animal models to provide an efficient and cost-effective platform to conduct rapid drug screening.</div></div>","PeriodicalId":12227,"journal":{"name":"Experimental cell research","volume":"446 1","pages":"Article 114449"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental cell research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001448272500045X","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Advancement of therapeutics for neurodegenerative diseases like amyotrophic lateral sclerosis (ALS) has been predominantly hampered by the dearth of relevant disease models. Despite numerous animal models, significant challenges remain in correlating these with human disease complexities. In this study, the ALS model was created using amniotic membrane-derived mesenchymal stem cells (AM-MSCs) which were differentiated into motor neurons (MN) with specific MN induction media and transiently transfected with mutated human SOD1 G93A plasmid to induce ALS-like condition. Characterization included gene expression analysis, immunocytochemistry, flow cytometry, and Western blot. Functional assays assessed the extent of degeneration and model efficiency. AM-MSCs demonstrated multipotency and were positive for MSC markers. Upon differentiation, the expression of MN markers like MNX1, Olig2, and ChAT were found to be elevated. SOD1 G93A overexpression, downregulated MN markers, upregulated NURR1 gene, reduced acetylcholine (ACh), reduced glutathione, and elevated oxidative stress markers. This robust in-vitro ALS model derived from AM-MSCs offers an alternative to animal models to provide an efficient and cost-effective platform to conduct rapid drug screening.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Experimental cell research
Experimental cell research 医学-细胞生物学
CiteScore
7.20
自引率
0.00%
发文量
295
审稿时长
30 days
期刊介绍: Our scope includes but is not limited to areas such as: Chromosome biology; Chromatin and epigenetics; DNA repair; Gene regulation; Nuclear import-export; RNA processing; Non-coding RNAs; Organelle biology; The cytoskeleton; Intracellular trafficking; Cell-cell and cell-matrix interactions; Cell motility and migration; Cell proliferation; Cellular differentiation; Signal transduction; Programmed cell death.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信