BRD1 deficiency affects SREBF1-related lipid metabolism through regulating H3K9ac/H3K9me3 transition to inhibit HCC progression.

IF 8.1 1区 生物学 Q1 CELL BIOLOGY
Mingyang Zhang, Jing Bai, Hengye Yuan, Xiaojun Duan, Lei Yu, Yu Li, Kexin Li, Saqi Rile, Xinran Wang, Haisheng Wang, Pengxia Liu, Jia Yan, Changshan Wang
{"title":"BRD1 deficiency affects SREBF1-related lipid metabolism through regulating H3K9ac/H3K9me3 transition to inhibit HCC progression.","authors":"Mingyang Zhang, Jing Bai, Hengye Yuan, Xiaojun Duan, Lei Yu, Yu Li, Kexin Li, Saqi Rile, Xinran Wang, Haisheng Wang, Pengxia Liu, Jia Yan, Changshan Wang","doi":"10.1038/s41419-025-07404-7","DOIUrl":null,"url":null,"abstract":"<p><p>BRD1 encodes a protein containing a bromodomain, which is an essential component of histone acetyltransferase (HAT) complexes. These complexes play a crucial role in the regulation of gene transcription and the modification of chromatin structures. The aberrant expression of BRD1 is frequently observed across a range of cancer types, including hepatocellular carcinomas (HCC). However, the precise mechanisms through which BRD1 contributes to tumorigenesis, especially in HCC, remain unclear. In our investigation, we have uncovered a novel role for BRD1 as an oncogene implicated the regulation of lipid metabolism in HCC progression. Specifically, the deficiency of BRD1 impedes the proliferation and metastasis of HCC cells reducing the accumulation of lipid droplets and cholesterol levels. This effect is mediated through the SREBF1-induced downregulation of SCD1 expression in HCC cells. Mechanistically, the ablation of BRD1 disrupts acetylation level of H3K9, culminating in the subsequent trimethylation of H3K9 (H3K9me3). Notably, the H3K14ac partially colocalizes with H3K9me3 and its methyltransferase SETDB1 to from a double labeling of both H3K14ac and H3K9me3 at the SREBF1 promoter. This double labeling contributes to the creation of a repressive environment, ultimately leading to the downregulation of SREBF1 gene expression in HCC. Furthermore, the combinatorial use of a BRD1 inhibitor and simvastatin augments antitumor efficacy in vivo. Collectively, our findings underscore BRD1 as a critical regulator of SREBF1-associated lipid metabolism and a participant in HCC progression through a distinct epigenetic regulatory mechanism. These discoveries further suggest a promising epigenetic therapeutic approach for the treatment of HCC.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":"16 1","pages":"104"},"PeriodicalIF":8.1000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11833140/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death & Disease","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41419-025-07404-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

BRD1 encodes a protein containing a bromodomain, which is an essential component of histone acetyltransferase (HAT) complexes. These complexes play a crucial role in the regulation of gene transcription and the modification of chromatin structures. The aberrant expression of BRD1 is frequently observed across a range of cancer types, including hepatocellular carcinomas (HCC). However, the precise mechanisms through which BRD1 contributes to tumorigenesis, especially in HCC, remain unclear. In our investigation, we have uncovered a novel role for BRD1 as an oncogene implicated the regulation of lipid metabolism in HCC progression. Specifically, the deficiency of BRD1 impedes the proliferation and metastasis of HCC cells reducing the accumulation of lipid droplets and cholesterol levels. This effect is mediated through the SREBF1-induced downregulation of SCD1 expression in HCC cells. Mechanistically, the ablation of BRD1 disrupts acetylation level of H3K9, culminating in the subsequent trimethylation of H3K9 (H3K9me3). Notably, the H3K14ac partially colocalizes with H3K9me3 and its methyltransferase SETDB1 to from a double labeling of both H3K14ac and H3K9me3 at the SREBF1 promoter. This double labeling contributes to the creation of a repressive environment, ultimately leading to the downregulation of SREBF1 gene expression in HCC. Furthermore, the combinatorial use of a BRD1 inhibitor and simvastatin augments antitumor efficacy in vivo. Collectively, our findings underscore BRD1 as a critical regulator of SREBF1-associated lipid metabolism and a participant in HCC progression through a distinct epigenetic regulatory mechanism. These discoveries further suggest a promising epigenetic therapeutic approach for the treatment of HCC.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Death & Disease
Cell Death & Disease CELL BIOLOGY-
CiteScore
15.10
自引率
2.20%
发文量
935
审稿时长
2 months
期刊介绍: Brought to readers by the editorial team of Cell Death & Differentiation, Cell Death & Disease is an online peer-reviewed journal specializing in translational cell death research. It covers a wide range of topics in experimental and internal medicine, including cancer, immunity, neuroscience, and now cancer metabolism. Cell Death & Disease seeks to encompass the breadth of translational implications of cell death, and topics of particular concentration will include, but are not limited to, the following: Experimental medicine Cancer Immunity Internal medicine Neuroscience Cancer metabolism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信