Krüppel-like factor 9 alleviates Alzheimer's disease via IDE-mediated Aβ degradation.

IF 6.9 1区 医学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yue-Yao Feng, Jing-Ran Hao, Yu-Jie Zhang, Tong-Tong Qiu, Meng-Lin Zhang, Wei Qiao, Jin-Jin Wu, Ping Qiu, Chao-Fan Xu, Yin-Liang Zhang, Chun-Yuan Du, Zhe Pan, Yong-Sheng Chang
{"title":"Krüppel-like factor 9 alleviates Alzheimer's disease via IDE-mediated Aβ degradation.","authors":"Yue-Yao Feng, Jing-Ran Hao, Yu-Jie Zhang, Tong-Tong Qiu, Meng-Lin Zhang, Wei Qiao, Jin-Jin Wu, Ping Qiu, Chao-Fan Xu, Yin-Liang Zhang, Chun-Yuan Du, Zhe Pan, Yong-Sheng Chang","doi":"10.1038/s41401-025-01491-0","DOIUrl":null,"url":null,"abstract":"<p><p>The deposition of β-amyloid (Aβ) in the brain is a crucial factor in the pathogenesis of Alzheimer's disease (AD). Insulin-degrading enzyme (IDE) plays a critical role in the balance between Aβ production and degradation. However, the regulatory mechanisms of IDE are not yet fully understood. Therefore, uncovering additional IDE regulatory mechanisms will help elucidate the pathogenesis of AD and identify key therapeutic targets for this disease. This study revealed that global Krüppel-like factor 9-mutant (Klf9<sup>-/-</sup>) mice exhibited impaired cognitive function. Additionally, we found that Klf9 expression in hippocampal tissue was reduced in APPswe/PS1dE9 (APP/PS1) mice. This study also showed that Klf9 stimulates IDE expression and promotes the Aβ degradation process by directly binding to IDE and activating its transcription. Silencing IDE blocked the Klf9-induced Aβ degradation process. We stereotactically injected an adeno-associated virus to selectively overexpress IDE (AAV-IDE) in the hippocampal neurons of Klf9<sup>-/-</sup> mice and found that the overexpression of IDE in hippocampal neurons ameliorated cognitive deficits and reduced the Aβ content in Klf9<sup>-/-</sup> mice. Additionally, we also stereotactically injected AAV-Klf9 into the hippocampal neurons of APP/PS1 mice and found that overexpression of Klf9 in hippocampal neurons ameliorated cognitive deficits and reduced Aβ levels in APP/PS1 mice. These findings suggest that downregulation of Klf9 may be a key factor in AD progression, as it reduces Aβ clearance by decreasing IDE expression. Overexpression or activation of Klf9 may be a potential strategy for preventing the pathogenesis of AD.</p>","PeriodicalId":6942,"journal":{"name":"Acta Pharmacologica Sinica","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmacologica Sinica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41401-025-01491-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The deposition of β-amyloid (Aβ) in the brain is a crucial factor in the pathogenesis of Alzheimer's disease (AD). Insulin-degrading enzyme (IDE) plays a critical role in the balance between Aβ production and degradation. However, the regulatory mechanisms of IDE are not yet fully understood. Therefore, uncovering additional IDE regulatory mechanisms will help elucidate the pathogenesis of AD and identify key therapeutic targets for this disease. This study revealed that global Krüppel-like factor 9-mutant (Klf9-/-) mice exhibited impaired cognitive function. Additionally, we found that Klf9 expression in hippocampal tissue was reduced in APPswe/PS1dE9 (APP/PS1) mice. This study also showed that Klf9 stimulates IDE expression and promotes the Aβ degradation process by directly binding to IDE and activating its transcription. Silencing IDE blocked the Klf9-induced Aβ degradation process. We stereotactically injected an adeno-associated virus to selectively overexpress IDE (AAV-IDE) in the hippocampal neurons of Klf9-/- mice and found that the overexpression of IDE in hippocampal neurons ameliorated cognitive deficits and reduced the Aβ content in Klf9-/- mice. Additionally, we also stereotactically injected AAV-Klf9 into the hippocampal neurons of APP/PS1 mice and found that overexpression of Klf9 in hippocampal neurons ameliorated cognitive deficits and reduced Aβ levels in APP/PS1 mice. These findings suggest that downregulation of Klf9 may be a key factor in AD progression, as it reduces Aβ clearance by decreasing IDE expression. Overexpression or activation of Klf9 may be a potential strategy for preventing the pathogenesis of AD.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Pharmacologica Sinica
Acta Pharmacologica Sinica 医学-化学综合
CiteScore
15.10
自引率
2.40%
发文量
4365
审稿时长
2 months
期刊介绍: APS (Acta Pharmacologica Sinica) welcomes submissions from diverse areas of pharmacology and the life sciences. While we encourage contributions across a broad spectrum, topics of particular interest include, but are not limited to: anticancer pharmacology, cardiovascular and pulmonary pharmacology, clinical pharmacology, drug discovery, gastrointestinal and hepatic pharmacology, genitourinary, renal, and endocrine pharmacology, immunopharmacology and inflammation, molecular and cellular pharmacology, neuropharmacology, pharmaceutics, and pharmacokinetics. Join us in sharing your research and insights in pharmacology and the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信