An Integrated Network Pharmacology and RNA-seq Approach for Exploring the Protective Effect of Isoquercitrin in Doxorubicin-Induced Cardiotoxicity: Identification of Novel Genes.
Habib Alam, Wei Bailing, Feng Zhao, Hayan Ullah, Inam Ullah, Muhsin Ali, Ijaz Ullah, Reyisha Tuerhong, Luying Zhang, Lei Shi
{"title":"An Integrated Network Pharmacology and RNA-seq Approach for Exploring the Protective Effect of Isoquercitrin in Doxorubicin-Induced Cardiotoxicity: Identification of Novel Genes.","authors":"Habib Alam, Wei Bailing, Feng Zhao, Hayan Ullah, Inam Ullah, Muhsin Ali, Ijaz Ullah, Reyisha Tuerhong, Luying Zhang, Lei Shi","doi":"10.1007/s12012-025-09968-4","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiotoxicity, a severe side effect of cytotoxic drugs like doxorubicin (DOX), can lead to cardiomyopathy and heart failure, significantly impacting patient prognosis. This study investigates the molecular mechanisms of DOX-induced cardiotoxicity and explores isoquercitrin (IQC) as a potential therapeutic agent. RNA-sequencing analysis revealed 7855 dysregulated genes in DOX vs. Control and 3853 in DOX + IQC vs. DOX groups. Functional enrichment analysis of upregulated genes in the DOX vs. Control group highlighted cytokine-cytokine receptor interaction and calcium signaling pathways as significant immune-related KEGG pathways. Immune genes were shortlisted based on inflammatory functions, followed by protein-protein interaction analysis and hub gene identification. This process revealed IL6, IL1B, IL10, CCL19, CD27, CSF1R, ADRB2, GDF15, TNFRSF10B, and PADI4 as the top 10 interacting immune hub genes. Validation in the DOX + IQC vs. DOX group showed that IQC downregulated CCL19, IL10, PADI4, and CSF1R genes. Computational drug design techniques, including virtual screening and molecular dynamic simulations, identified promising targets for IQC. These targets were experimentally validated using RT-qPCR in AC16 cell lines under four conditions: control, DOX, low dose DOX + IQC, and high dose DOX + IQC. The study demonstrates that IQC significantly reduces inflammation and oxidative stress in human AC16 cardiomyocyte cell line by downregulating inflammatory and stress pathways induced by DOX. It concludes that CCL19 and PADI4 are crucial immune biomarkers for treating DOX-induced cardiotoxicity using IQC, providing insights into potential therapeutic strategies using plant-based compounds to mitigate the cardiotoxic effects of DOX in cancer treatment.</p>","PeriodicalId":9570,"journal":{"name":"Cardiovascular Toxicology","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12012-025-09968-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Cardiotoxicity, a severe side effect of cytotoxic drugs like doxorubicin (DOX), can lead to cardiomyopathy and heart failure, significantly impacting patient prognosis. This study investigates the molecular mechanisms of DOX-induced cardiotoxicity and explores isoquercitrin (IQC) as a potential therapeutic agent. RNA-sequencing analysis revealed 7855 dysregulated genes in DOX vs. Control and 3853 in DOX + IQC vs. DOX groups. Functional enrichment analysis of upregulated genes in the DOX vs. Control group highlighted cytokine-cytokine receptor interaction and calcium signaling pathways as significant immune-related KEGG pathways. Immune genes were shortlisted based on inflammatory functions, followed by protein-protein interaction analysis and hub gene identification. This process revealed IL6, IL1B, IL10, CCL19, CD27, CSF1R, ADRB2, GDF15, TNFRSF10B, and PADI4 as the top 10 interacting immune hub genes. Validation in the DOX + IQC vs. DOX group showed that IQC downregulated CCL19, IL10, PADI4, and CSF1R genes. Computational drug design techniques, including virtual screening and molecular dynamic simulations, identified promising targets for IQC. These targets were experimentally validated using RT-qPCR in AC16 cell lines under four conditions: control, DOX, low dose DOX + IQC, and high dose DOX + IQC. The study demonstrates that IQC significantly reduces inflammation and oxidative stress in human AC16 cardiomyocyte cell line by downregulating inflammatory and stress pathways induced by DOX. It concludes that CCL19 and PADI4 are crucial immune biomarkers for treating DOX-induced cardiotoxicity using IQC, providing insights into potential therapeutic strategies using plant-based compounds to mitigate the cardiotoxic effects of DOX in cancer treatment.
期刊介绍:
Cardiovascular Toxicology is the only journal dedicated to publishing contemporary issues, timely reviews, and experimental and clinical data on toxicological aspects of cardiovascular disease. CT publishes papers that will elucidate the effects, molecular mechanisms, and signaling pathways of environmental toxicants on the cardiovascular system. Also covered are the detrimental effects of new cardiovascular drugs, and cardiovascular effects of non-cardiovascular drugs, anti-cancer chemotherapy, and gene therapy. In addition, Cardiovascular Toxicology reports safety and toxicological data on new cardiovascular and non-cardiovascular drugs.