Impact of a Cancer-Associated Mutation on Poly(ADP-ribose) Polymerase1 Inhibition.

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL
Neel Shanmugam, Shubham Chatterjee, G Andrés Cisneros
{"title":"Impact of a Cancer-Associated Mutation on Poly(ADP-ribose) Polymerase1 Inhibition.","authors":"Neel Shanmugam, Shubham Chatterjee, G Andrés Cisneros","doi":"10.1021/acs.jpcb.4c07960","DOIUrl":null,"url":null,"abstract":"<p><p>Poly(ADP-ribose) polymerase1 (PARP1) plays a vital role in DNA repair, and its inhibition in cancer cells may cause cell apoptosis. In this study, we investigated the effects of a PARP1 variant, V762A, which is strongly associated with several cancers in humans, on the inhibition of PARP1 by three FDA-approved inhibitors: niraparib, rucaparib, and talazoparib. Specifically, we compared the inhibition of the mutant to that of wild-type (WT) PARP1. Additionally, we investigated how the mutation influences the binding of these inhibitors to PARP1. Our work suggests that while mutant PARP1 exhibits only minor differences in residual fluctuations, backbone deviations, and residue motion correlations compared to the WT under niraparib and rucaparib inhibitions, it shows significant and distinct differences in these features when inhibited by talazoparib. Among the three inhibitions, talazoparib inhibition uniquely lowers the average residue fluctuations in the mutant than the WT including lower fluctuations of mutant's N- and C-terminal residues in the catalytic domain, conserved H-Y-E traid residues, and donor loop (D-loop) residues which are important for catalysis more effectively than other inhibitions. However, talazoparib also significantly enhances destabilizing interactions between the mutation site in the HD domain in the mutant than WT. Further, among the three inhibitions, talazoparib inhibition uniquely and significantly disrupts the functional fluctuations of terminal regions in the mutant, which are otherwise present in the WT. The mutation and inhibition do not significantly affect PARP1's essential dynamics. Lastly, these inhibitors bind to the V762A mutant more effectively than to the WT, with similar binding free energies between them.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c07960","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Poly(ADP-ribose) polymerase1 (PARP1) plays a vital role in DNA repair, and its inhibition in cancer cells may cause cell apoptosis. In this study, we investigated the effects of a PARP1 variant, V762A, which is strongly associated with several cancers in humans, on the inhibition of PARP1 by three FDA-approved inhibitors: niraparib, rucaparib, and talazoparib. Specifically, we compared the inhibition of the mutant to that of wild-type (WT) PARP1. Additionally, we investigated how the mutation influences the binding of these inhibitors to PARP1. Our work suggests that while mutant PARP1 exhibits only minor differences in residual fluctuations, backbone deviations, and residue motion correlations compared to the WT under niraparib and rucaparib inhibitions, it shows significant and distinct differences in these features when inhibited by talazoparib. Among the three inhibitions, talazoparib inhibition uniquely lowers the average residue fluctuations in the mutant than the WT including lower fluctuations of mutant's N- and C-terminal residues in the catalytic domain, conserved H-Y-E traid residues, and donor loop (D-loop) residues which are important for catalysis more effectively than other inhibitions. However, talazoparib also significantly enhances destabilizing interactions between the mutation site in the HD domain in the mutant than WT. Further, among the three inhibitions, talazoparib inhibition uniquely and significantly disrupts the functional fluctuations of terminal regions in the mutant, which are otherwise present in the WT. The mutation and inhibition do not significantly affect PARP1's essential dynamics. Lastly, these inhibitors bind to the V762A mutant more effectively than to the WT, with similar binding free energies between them.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信