Targeted Oral Fixed-Dose Combination of Amphotericin B-Miltefosine for Visceral Leishmaniasis.

IF 4.5 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Raquel Fernández-García, David Walsh, Peter O'Connell, Luiz Felipe D Passero, Jéssica A de Jesus, Marcia Dalastra Laurenti, María Auxiliadora Dea-Ayuela, M Paloma Ballesteros, Aikaterini Lalatsa, Francisco Bolás-Fernández, Anne Marie Healy, Dolores R Serrano
{"title":"Targeted Oral Fixed-Dose Combination of Amphotericin B-Miltefosine for Visceral Leishmaniasis.","authors":"Raquel Fernández-García, David Walsh, Peter O'Connell, Luiz Felipe D Passero, Jéssica A de Jesus, Marcia Dalastra Laurenti, María Auxiliadora Dea-Ayuela, M Paloma Ballesteros, Aikaterini Lalatsa, Francisco Bolás-Fernández, Anne Marie Healy, Dolores R Serrano","doi":"10.1021/acs.molpharmaceut.4c01133","DOIUrl":null,"url":null,"abstract":"<p><p>The incidence of visceral leishmaniasis (VL) remains a significant health threat in endemic countries. Fixed-dose combination (FDC) of amphotericin B (AmB) and miltefosine (MLT) is a promising strategy for treating VL, but the parenteral administration of AmB leads to severe side effects, limiting its use in clinical practice. Here, we developed novel FDC granules combining AmB in the core with a MLT coating using wet granulation followed by the fluidized bed technology. The granules maintained the crystalline structure of AmB throughout manufacturing, achieving an AmB loading of ∼20%. The MLT coating layer effectively sustained AmB release from 3 to 24 h following Korsmeyer-Peppas kinetics. The formulation demonstrated remarkable stability, maintaining >90% drug content for over a year at both 4 °C and room temperature under desiccated conditions. In vivo efficacy studies in <i>Leishmania infantum</i><i>-</i>infected hamsters showed 65-80% reduction in parasite burden in spleen and liver, respectively, suggesting potential as an oral alternative to current VL treatments. Uncoated and coated granules demonstrated comparable performance in key aspects, including <i>in vivo</i> efficacy and long-term stability.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.molpharmaceut.4c01133","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The incidence of visceral leishmaniasis (VL) remains a significant health threat in endemic countries. Fixed-dose combination (FDC) of amphotericin B (AmB) and miltefosine (MLT) is a promising strategy for treating VL, but the parenteral administration of AmB leads to severe side effects, limiting its use in clinical practice. Here, we developed novel FDC granules combining AmB in the core with a MLT coating using wet granulation followed by the fluidized bed technology. The granules maintained the crystalline structure of AmB throughout manufacturing, achieving an AmB loading of ∼20%. The MLT coating layer effectively sustained AmB release from 3 to 24 h following Korsmeyer-Peppas kinetics. The formulation demonstrated remarkable stability, maintaining >90% drug content for over a year at both 4 °C and room temperature under desiccated conditions. In vivo efficacy studies in Leishmania infantum-infected hamsters showed 65-80% reduction in parasite burden in spleen and liver, respectively, suggesting potential as an oral alternative to current VL treatments. Uncoated and coated granules demonstrated comparable performance in key aspects, including in vivo efficacy and long-term stability.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Pharmaceutics
Molecular Pharmaceutics 医学-药学
CiteScore
8.00
自引率
6.10%
发文量
391
审稿时长
2 months
期刊介绍: Molecular Pharmaceutics publishes the results of original research that contributes significantly to the molecular mechanistic understanding of drug delivery and drug delivery systems. The journal encourages contributions describing research at the interface of drug discovery and drug development. Scientific areas within the scope of the journal include physical and pharmaceutical chemistry, biochemistry and biophysics, molecular and cellular biology, and polymer and materials science as they relate to drug and drug delivery system efficacy. Mechanistic Drug Delivery and Drug Targeting research on modulating activity and efficacy of a drug or drug product is within the scope of Molecular Pharmaceutics. Theoretical and experimental peer-reviewed research articles, communications, reviews, and perspectives are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信