Crystal structure of dihydroorotate dehydrogenase from Helicobacter pylori with bound flavin mononucleotide

IF 1.1 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS
Ashna A. Agarwal, John D. Georgiades, David M. Dranow, Donald D. Lorimer, Thomas Edwards, Kayleigh F. Barrett, Justin K. Craig, Wesley C. Van Voorhis, Peter J. Myler, Craig L. Smith
{"title":"Crystal structure of dihydroorotate dehydrogenase from Helicobacter pylori with bound flavin mononucleotide","authors":"Ashna A. Agarwal,&nbsp;John D. Georgiades,&nbsp;David M. Dranow,&nbsp;Donald D. Lorimer,&nbsp;Thomas Edwards,&nbsp;Kayleigh F. Barrett,&nbsp;Justin K. Craig,&nbsp;Wesley C. Van Voorhis,&nbsp;Peter J. Myler,&nbsp;Craig L. Smith","doi":"10.1107/S2053230X25000858","DOIUrl":null,"url":null,"abstract":"<p><i>Helicobacter pylori</i> is the primary causative agent of peptic ulcer disease, among other gastrointestinal ailments, and currently affects over half of the global population. Although some treatments exist, growing resistance to these drugs has prompted efforts to develop novel approaches to fighting this pathogen. To generate many of the nucleotides essential to biochemical processes, <i>H. pylori</i> relies exclusively on the <i>de novo</i> biosynthesis of these molecules. Recent drug-discovery efforts have targeted the first committed step of this pathway, catalysed by a class 2 dihydroorotate dehydrogenase (DHODH). However, these initiatives have been limited by the lack of a crystal structure. Here, we detail the crystal structure of <i>H. pylori</i> DHODH (<i>Hp</i>DHODH) at 2.25 Å resolution (PDB entry 6b8s). We performed a large-scale bioinformatics search to find evolutionary homologs. Our results indicate that <i>Hp</i>DHODH shows high conservation of both sequence and structure in its active site. We identified key polar interactions between the <i>Hp</i>DHODH protein and its requisite flavin mononucleotide (FMN) cofactor, identifying amino-acid residues that are critical to its function. Most notably, we found that <i>Hp</i>DHODH maintains several structural features that allow it to associate with the inner membrane and utilize ubiquinone to achieve catalytic turnover. We discovered a hydrophobic channel that runs from the putative membrane interface on the N-terminal microdomain to the core of the protein. We predict that this channel establishes a connection between the ubiquinone pool in the membrane and the FMN in the active site. These findings provide a structural explanation for the competitive inhibition of ubiquinone by pyrazole-based compounds that was determined biochemically in other studies. Understanding this mechanism may facilitate the development of new drugs targeting this enzyme and push the effort to find a resistance-free treatment for <i>H. pylori</i>.</p>","PeriodicalId":7029,"journal":{"name":"Acta crystallographica. Section F, Structural biology communications","volume":"81 3","pages":"108-117"},"PeriodicalIF":1.1000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta crystallographica. Section F, Structural biology communications","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1107/S2053230X25000858","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Helicobacter pylori is the primary causative agent of peptic ulcer disease, among other gastrointestinal ailments, and currently affects over half of the global population. Although some treatments exist, growing resistance to these drugs has prompted efforts to develop novel approaches to fighting this pathogen. To generate many of the nucleotides essential to biochemical processes, H. pylori relies exclusively on the de novo biosynthesis of these molecules. Recent drug-discovery efforts have targeted the first committed step of this pathway, catalysed by a class 2 dihydroorotate dehydrogenase (DHODH). However, these initiatives have been limited by the lack of a crystal structure. Here, we detail the crystal structure of H. pylori DHODH (HpDHODH) at 2.25 Å resolution (PDB entry 6b8s). We performed a large-scale bioinformatics search to find evolutionary homologs. Our results indicate that HpDHODH shows high conservation of both sequence and structure in its active site. We identified key polar interactions between the HpDHODH protein and its requisite flavin mononucleotide (FMN) cofactor, identifying amino-acid residues that are critical to its function. Most notably, we found that HpDHODH maintains several structural features that allow it to associate with the inner membrane and utilize ubiquinone to achieve catalytic turnover. We discovered a hydrophobic channel that runs from the putative membrane interface on the N-terminal microdomain to the core of the protein. We predict that this channel establishes a connection between the ubiquinone pool in the membrane and the FMN in the active site. These findings provide a structural explanation for the competitive inhibition of ubiquinone by pyrazole-based compounds that was determined biochemically in other studies. Understanding this mechanism may facilitate the development of new drugs targeting this enzyme and push the effort to find a resistance-free treatment for H. pylori.

Abstract Image

结合黄素单核苷酸的幽门螺杆菌二氢酸脱氢酶的晶体结构。
幽门螺杆菌是消化性溃疡和其他胃肠道疾病的主要病原体,目前影响着全球一半以上的人口。尽管存在一些治疗方法,但对这些药物日益增长的耐药性促使人们努力开发对抗这种病原体的新方法。为了产生生化过程所必需的许多核苷酸,幽门螺杆菌完全依赖于这些分子的从头生物合成。最近的药物发现工作瞄准了这一途径的第一步,由2类二氢乙酸脱氢酶(DHODH)催化。然而,由于缺乏晶体结构,这些举措受到了限制。在这里,我们以2.25 Å分辨率(PDB入口6b8s)详细描述了幽门螺杆菌DHODH (HpDHODH)的晶体结构。我们进行了大规模的生物信息学搜索,以寻找进化同源物。我们的结果表明,HpDHODH在其活性位点具有高度的序列和结构保守性。我们确定了HpDHODH蛋白与其必需的黄素单核苷酸(FMN)辅因子之间的关键极性相互作用,确定了对其功能至关重要的氨基酸残基。最值得注意的是,我们发现HpDHODH保持了几个结构特征,使其能够与内膜结合并利用泛醌实现催化周转。我们发现了一个疏水通道,从n端微域的假定膜界面到蛋白质的核心。我们预测这个通道在膜中的泛醌池和活性位点的FMN之间建立了连接。这些发现为吡唑类化合物对泛醌的竞争性抑制提供了结构上的解释,这在其他研究中是由生物化学确定的。了解这一机制可能有助于开发针对这种酶的新药,并推动寻找一种无耐药性的幽门螺杆菌治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta crystallographica. Section F, Structural biology communications
Acta crystallographica. Section F, Structural biology communications BIOCHEMICAL RESEARCH METHODSBIOCHEMISTRY &-BIOCHEMISTRY & MOLECULAR BIOLOGY
CiteScore
1.90
自引率
0.00%
发文量
95
期刊介绍: Acta Crystallographica Section F is a rapid structural biology communications journal. Articles on any aspect of structural biology, including structures determined using high-throughput methods or from iterative studies such as those used in the pharmaceutical industry, are welcomed by the journal. The journal offers the option of open access, and all communications benefit from unlimited free use of colour illustrations and no page charges. Authors are encouraged to submit multimedia content for publication with their articles. Acta Cryst. F has a dedicated online tool called publBio that is designed to make the preparation and submission of articles easier for authors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信