Aparajita Ghosh, Neeraja Rayanki, Abhijeet R Joshi, Onkar P Kulkarni
{"title":"UPF 648, a Selective KMO Inhibitor, Attenuates Psychomotor and Cognitive Impairment in Chronic Kidney Disease.","authors":"Aparajita Ghosh, Neeraja Rayanki, Abhijeet R Joshi, Onkar P Kulkarni","doi":"10.1021/acschemneuro.4c00844","DOIUrl":null,"url":null,"abstract":"<p><p>Kynurenine-3-monooxygenase (KMO), a key enzyme in the kynurenine pathway (KP) of tryptophan metabolism, converts kynurenine into the neurotoxic intermediate quinolinic acid (QA). QA, an <i>N</i>-methyl-d-aspartate (NMDA) receptor agonist, increases glutamate release and inhibits its reuptake, resulting in excitotoxic cell death in the hippocampus and striatum. Plasma metabolomics study exhibited KP metabolites as the most altered pathway in patients with chronic kidney disease (CKD). Recently, QA was linked to the kidney-brain axis as one of the major neurotoxins responsible for cognitive impairment in advanced CKD stages. Various preclinical models are being tested to explore different intermediates of KP that can be targeted to ameliorate the central nervous system (CNS) complications of CKD. In this study, an adenine-induced CKD model was developed in C57BL/6 mice, where UPF 648, a selective KMO inhibitor, was administered to observe the changes in KP metabolites in the hippocampus. Treatment with UPF 648 did not alter kidney function or morphology in CKD. KMO inhibition led to decreased plasma QA levels and reduced levels of pro-inflammatory cytokine interleukin-1-β (IL-1β). UPF 648 treatment in CKD ameliorated the characteristic symptoms of motor dysfunction, anxiety, depression, and hippocampus-dependent memory. Important markers for neuronal survival and plasticity through the brain-derived neurotrophic factor (BDNF)-tropomyosin receptor kinase B (TRKB)-cAMP-responsive element binding protein 1 (CREB1) pathway were upregulated in the hippocampus after KMO inhibition. In conclusion, KMO inhibition can be an exciting target to attenuate the neuropsychiatric burden of advanced stages in CKD.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acschemneuro.4c00844","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Kynurenine-3-monooxygenase (KMO), a key enzyme in the kynurenine pathway (KP) of tryptophan metabolism, converts kynurenine into the neurotoxic intermediate quinolinic acid (QA). QA, an N-methyl-d-aspartate (NMDA) receptor agonist, increases glutamate release and inhibits its reuptake, resulting in excitotoxic cell death in the hippocampus and striatum. Plasma metabolomics study exhibited KP metabolites as the most altered pathway in patients with chronic kidney disease (CKD). Recently, QA was linked to the kidney-brain axis as one of the major neurotoxins responsible for cognitive impairment in advanced CKD stages. Various preclinical models are being tested to explore different intermediates of KP that can be targeted to ameliorate the central nervous system (CNS) complications of CKD. In this study, an adenine-induced CKD model was developed in C57BL/6 mice, where UPF 648, a selective KMO inhibitor, was administered to observe the changes in KP metabolites in the hippocampus. Treatment with UPF 648 did not alter kidney function or morphology in CKD. KMO inhibition led to decreased plasma QA levels and reduced levels of pro-inflammatory cytokine interleukin-1-β (IL-1β). UPF 648 treatment in CKD ameliorated the characteristic symptoms of motor dysfunction, anxiety, depression, and hippocampus-dependent memory. Important markers for neuronal survival and plasticity through the brain-derived neurotrophic factor (BDNF)-tropomyosin receptor kinase B (TRKB)-cAMP-responsive element binding protein 1 (CREB1) pathway were upregulated in the hippocampus after KMO inhibition. In conclusion, KMO inhibition can be an exciting target to attenuate the neuropsychiatric burden of advanced stages in CKD.
期刊介绍:
ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following:
Neurotransmitters and receptors
Neuropharmaceuticals and therapeutics
Neural development—Plasticity, and degeneration
Chemical, physical, and computational methods in neuroscience
Neuronal diseases—basis, detection, and treatment
Mechanism of aging, learning, memory and behavior
Pain and sensory processing
Neurotoxins
Neuroscience-inspired bioengineering
Development of methods in chemical neurobiology
Neuroimaging agents and technologies
Animal models for central nervous system diseases
Behavioral research