Circ_0070934 Regulates the Proliferation, Metastasis, and Epithelial–Mesenchymal Transition of Colorectal Cancer Cells by Targeting miR-203a-3p/HOXA13 Axis
{"title":"Circ_0070934 Regulates the Proliferation, Metastasis, and Epithelial–Mesenchymal Transition of Colorectal Cancer Cells by Targeting miR-203a-3p/HOXA13 Axis","authors":"Xin Zhang, Changjiang Lei, Hongxia Lu, Biao Kang, Maoxi Liu, Huiyuan Jiang, Likun Zan","doi":"10.1002/jbt.70173","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The present work explored the functions of circ_0070934 in regulating malignant phenotype of colorectal cancer (CRC) cells and its underlying mechanisms. Gene expression data set was acquired based on Gene Expression Omnibus (GEO) database for examining circ_0070934 levels within CRC cells and tissues through quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Kaplan–Meier curve and log-rank test were adopted for assessing CRC patient prognosis based on circ_0070934 level. Functional assays including Cell Counting Kit (CCK)-8, EdU incorporation, Transwell invasion, and scratch assays were conducted to determine CRC cell malignancy. Molecular interactions were predicted using circInteractome and StarBase databases, and validated through luciferase reporter assay. Circ_0070934 was upregulated within CRC cells and tissues, which was related to a dismal prognostic outcome in CRC patients. Knocking down circ_0070934 inhibited CRC cell proliferation, epithelial–mesenchymal transition (EMT), and migration. Further, we identified miR-203a-3p as a target miRNA of circ_0070934, and miR-203a-3p negatively regulated Homeobox A13 (HOXA13) expression. miR-203a-3p/HOXA13 axis mediates the function of circ_0070934 in modulating CRC cell malignancy. These data revealed that circ_0070934 was important for maintaining the malignant phenotype of CRC cells, and circ_0070934 knockdown undermined CRC cell malignancy. Targeting circ_0070934/miR-203a-3p/HOXA13 axis is the promising intervention approach for managing CRC.</p></div>","PeriodicalId":15151,"journal":{"name":"Journal of Biochemical and Molecular Toxicology","volume":"39 2","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biochemical and Molecular Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbt.70173","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The present work explored the functions of circ_0070934 in regulating malignant phenotype of colorectal cancer (CRC) cells and its underlying mechanisms. Gene expression data set was acquired based on Gene Expression Omnibus (GEO) database for examining circ_0070934 levels within CRC cells and tissues through quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Kaplan–Meier curve and log-rank test were adopted for assessing CRC patient prognosis based on circ_0070934 level. Functional assays including Cell Counting Kit (CCK)-8, EdU incorporation, Transwell invasion, and scratch assays were conducted to determine CRC cell malignancy. Molecular interactions were predicted using circInteractome and StarBase databases, and validated through luciferase reporter assay. Circ_0070934 was upregulated within CRC cells and tissues, which was related to a dismal prognostic outcome in CRC patients. Knocking down circ_0070934 inhibited CRC cell proliferation, epithelial–mesenchymal transition (EMT), and migration. Further, we identified miR-203a-3p as a target miRNA of circ_0070934, and miR-203a-3p negatively regulated Homeobox A13 (HOXA13) expression. miR-203a-3p/HOXA13 axis mediates the function of circ_0070934 in modulating CRC cell malignancy. These data revealed that circ_0070934 was important for maintaining the malignant phenotype of CRC cells, and circ_0070934 knockdown undermined CRC cell malignancy. Targeting circ_0070934/miR-203a-3p/HOXA13 axis is the promising intervention approach for managing CRC.
期刊介绍:
The Journal of Biochemical and Molecular Toxicology is an international journal that contains original research papers, rapid communications, mini-reviews, and book reviews, all focusing on the molecular mechanisms of action and detoxication of exogenous and endogenous chemicals and toxic agents. The scope includes effects on the organism at all stages of development, on organ systems, tissues, and cells as well as on enzymes, receptors, hormones, and genes. The biochemical and molecular aspects of uptake, transport, storage, excretion, lactivation and detoxication of drugs, agricultural, industrial and environmental chemicals, natural products and food additives are all subjects suitable for publication. Of particular interest are aspects of molecular biology related to biochemical toxicology. These include studies of the expression of genes related to detoxication and activation enzymes, toxicants with modes of action involving effects on nucleic acids, gene expression and protein synthesis, and the toxicity of products derived from biotechnology.