MP: motion program synthesis with machine learning interpretability and knowledge graph analogy

IF 3.1 2区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Cheng-Hao Cai
{"title":"MP: motion program synthesis with machine learning interpretability and knowledge graph analogy","authors":"Cheng-Hao Cai","doi":"10.1007/s10515-025-00495-8","DOIUrl":null,"url":null,"abstract":"<div><p>The advancement of physics-based engines has led to the popularity of virtual reality. To achieve a more realistic and immersive user experience, the behaviours of objects in virtual scenes are expected to conform to real-world physical laws accurately. This increases the workload and development time for developers. To facilitate development on physics-based engines, this paper proposes MP that is a motion program synthesis approach based on machine learning and analogical reasoning. MP follows the paradigm of test-driven development, where programs are generated to fit test cases of motions subject to multiple environmental factors such as gravity and airflows. To reduce the search space of code generation, regression models are used to find variables that cause significant influences to motions, while analogical reasoning on knowledge graphs is used to find operators that work for the found variables. Besides, constraint solving is used to probabilistically estimate the values of constants in motion programs. Experimental results have demonstrated that MP is efficient in various motion program generation tasks, with random forest regressors achieving low data and time requirements.</p></div>","PeriodicalId":55414,"journal":{"name":"Automated Software Engineering","volume":"32 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10515-025-00495-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automated Software Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10515-025-00495-8","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The advancement of physics-based engines has led to the popularity of virtual reality. To achieve a more realistic and immersive user experience, the behaviours of objects in virtual scenes are expected to conform to real-world physical laws accurately. This increases the workload and development time for developers. To facilitate development on physics-based engines, this paper proposes MP that is a motion program synthesis approach based on machine learning and analogical reasoning. MP follows the paradigm of test-driven development, where programs are generated to fit test cases of motions subject to multiple environmental factors such as gravity and airflows. To reduce the search space of code generation, regression models are used to find variables that cause significant influences to motions, while analogical reasoning on knowledge graphs is used to find operators that work for the found variables. Besides, constraint solving is used to probabilistically estimate the values of constants in motion programs. Experimental results have demonstrated that MP is efficient in various motion program generation tasks, with random forest regressors achieving low data and time requirements.

MP:运动程序合成与机器学习可解释性和知识图类比
基于物理的引擎的进步导致了虚拟现实的普及。为了获得更加逼真和身临其境的用户体验,虚拟场景中物体的行为被期望准确地符合现实世界的物理规律。这增加了开发人员的工作量和开发时间。为了促进基于物理的引擎的开发,本文提出了MP,这是一种基于机器学习和类比推理的运动程序合成方法。MP遵循测试驱动开发的范例,其中程序生成以适应受多种环境因素(如重力和气流)影响的运动的测试用例。为了减少代码生成的搜索空间,使用回归模型来寻找对运动产生重大影响的变量,而使用知识图上的类比推理来寻找对所发现的变量起作用的算子。此外,还采用约束求解方法对运动程序中的常量进行概率估计。实验结果表明,MP在各种运动程序生成任务中是有效的,随机森林回归器实现了低数据和时间要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Automated Software Engineering
Automated Software Engineering 工程技术-计算机:软件工程
CiteScore
4.80
自引率
11.80%
发文量
51
审稿时长
>12 weeks
期刊介绍: This journal details research, tutorial papers, survey and accounts of significant industrial experience in the foundations, techniques, tools and applications of automated software engineering technology. This includes the study of techniques for constructing, understanding, adapting, and modeling software artifacts and processes. Coverage in Automated Software Engineering examines both automatic systems and collaborative systems as well as computational models of human software engineering activities. In addition, it presents knowledge representations and artificial intelligence techniques applicable to automated software engineering, and formal techniques that support or provide theoretical foundations. The journal also includes reviews of books, software, conferences and workshops.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信