Integration of germanium-vacancy single photon emitters arrays in diamond nanopillars

IF 5.8 2区 物理与天体物理 Q1 OPTICS
Elisa Redolfi, Vanna Pugliese, Elia Scattolo, Alessandro Cian, Elena Missale, Felipe Favaro de Oliveira, Gediminas Seniutinas, Sviatoslav Ditalia Tchernij, Rossana Dell’Anna, Paolo Traina, Paolo Olivero, Damiano Giubertoni, Jacopo Forneris
{"title":"Integration of germanium-vacancy single photon emitters arrays in diamond nanopillars","authors":"Elisa Redolfi,&nbsp;Vanna Pugliese,&nbsp;Elia Scattolo,&nbsp;Alessandro Cian,&nbsp;Elena Missale,&nbsp;Felipe Favaro de Oliveira,&nbsp;Gediminas Seniutinas,&nbsp;Sviatoslav Ditalia Tchernij,&nbsp;Rossana Dell’Anna,&nbsp;Paolo Traina,&nbsp;Paolo Olivero,&nbsp;Damiano Giubertoni,&nbsp;Jacopo Forneris","doi":"10.1140/epjqt/s40507-025-00329-2","DOIUrl":null,"url":null,"abstract":"<div><p>The nanoscale fabrication of <i>μ</i>m-spaced single-photon emitter arrays is crucial for the development of integrated photonic chips. We report on the fabrication and systematic characterization of germanium-vacancy (GeV) color centers arrays in diamond obtained upon ion implantation at the nanoscale. Ge<sup>2+</sup> ion implantations at 35 keV and 70 keV energies were carried out using a focused ion beam (FIB) equipped with a liquid metal alloy ion source. The arrays of emitters are subsequently aligned to ø300 nm nanopillar waveguiding structures, fabricated using a combination of electron-beam lithography and plasma etching. The photon collection efficiency and photoluminescence (PL) signal-to-background ratio increased by a factor 8 with respect to the unstructured sample. The photophysical properties of the GeV emitters fabricated by this approach were unaltered with respect to those found in unprocessed diamond. The efficiency of the overall manufacturing process to fabricate individual GeV centers was assessed. Up to 33% of the fabricated nanopillars, depending on ion implantation parameters, were found to contain single emitters.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"12 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00329-2","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-025-00329-2","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The nanoscale fabrication of μm-spaced single-photon emitter arrays is crucial for the development of integrated photonic chips. We report on the fabrication and systematic characterization of germanium-vacancy (GeV) color centers arrays in diamond obtained upon ion implantation at the nanoscale. Ge2+ ion implantations at 35 keV and 70 keV energies were carried out using a focused ion beam (FIB) equipped with a liquid metal alloy ion source. The arrays of emitters are subsequently aligned to ø300 nm nanopillar waveguiding structures, fabricated using a combination of electron-beam lithography and plasma etching. The photon collection efficiency and photoluminescence (PL) signal-to-background ratio increased by a factor 8 with respect to the unstructured sample. The photophysical properties of the GeV emitters fabricated by this approach were unaltered with respect to those found in unprocessed diamond. The efficiency of the overall manufacturing process to fabricate individual GeV centers was assessed. Up to 33% of the fabricated nanopillars, depending on ion implantation parameters, were found to contain single emitters.

锗-空位单光子发射阵列在金刚石纳米柱中的集成
微米间距单光子发射阵列的纳米级制造对于集成光子芯片的发展至关重要。我们报道了在纳米级离子注入的情况下,金刚石中锗空位(GeV)色中心阵列的制备和系统表征。利用配备液态金属合金离子源的聚焦离子束(FIB),在35 keV和70 keV的能量下进行了Ge2+离子注入。发射器阵列随后对准约300 nm的纳米柱波导结构,该结构采用电子束光刻和等离子体蚀刻相结合的方式制造。与非结构样品相比,光子收集效率和光致发光(PL)信本比提高了8倍。用这种方法制备的GeV发射体的光物理性质与未加工金刚石中的发光体没有变化。评估了制造单个GeV中心的整体制造过程的效率。根据离子注入参数的不同,高达33%的纳米柱含有单个发射器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
EPJ Quantum Technology
EPJ Quantum Technology Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
7.70
自引率
7.50%
发文量
28
审稿时长
71 days
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following: Quantum measurement, metrology and lithography Quantum complex systems, networks and cellular automata Quantum electromechanical systems Quantum optomechanical systems Quantum machines, engineering and nanorobotics Quantum control theory Quantum information, communication and computation Quantum thermodynamics Quantum metamaterials The effect of Casimir forces on micro- and nano-electromechanical systems Quantum biology Quantum sensing Hybrid quantum systems Quantum simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信