Elisa Redolfi, Vanna Pugliese, Elia Scattolo, Alessandro Cian, Elena Missale, Felipe Favaro de Oliveira, Gediminas Seniutinas, Sviatoslav Ditalia Tchernij, Rossana Dell’Anna, Paolo Traina, Paolo Olivero, Damiano Giubertoni, Jacopo Forneris
{"title":"Integration of germanium-vacancy single photon emitters arrays in diamond nanopillars","authors":"Elisa Redolfi, Vanna Pugliese, Elia Scattolo, Alessandro Cian, Elena Missale, Felipe Favaro de Oliveira, Gediminas Seniutinas, Sviatoslav Ditalia Tchernij, Rossana Dell’Anna, Paolo Traina, Paolo Olivero, Damiano Giubertoni, Jacopo Forneris","doi":"10.1140/epjqt/s40507-025-00329-2","DOIUrl":null,"url":null,"abstract":"<div><p>The nanoscale fabrication of <i>μ</i>m-spaced single-photon emitter arrays is crucial for the development of integrated photonic chips. We report on the fabrication and systematic characterization of germanium-vacancy (GeV) color centers arrays in diamond obtained upon ion implantation at the nanoscale. Ge<sup>2+</sup> ion implantations at 35 keV and 70 keV energies were carried out using a focused ion beam (FIB) equipped with a liquid metal alloy ion source. The arrays of emitters are subsequently aligned to ø300 nm nanopillar waveguiding structures, fabricated using a combination of electron-beam lithography and plasma etching. The photon collection efficiency and photoluminescence (PL) signal-to-background ratio increased by a factor 8 with respect to the unstructured sample. The photophysical properties of the GeV emitters fabricated by this approach were unaltered with respect to those found in unprocessed diamond. The efficiency of the overall manufacturing process to fabricate individual GeV centers was assessed. Up to 33% of the fabricated nanopillars, depending on ion implantation parameters, were found to contain single emitters.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"12 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00329-2","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-025-00329-2","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The nanoscale fabrication of μm-spaced single-photon emitter arrays is crucial for the development of integrated photonic chips. We report on the fabrication and systematic characterization of germanium-vacancy (GeV) color centers arrays in diamond obtained upon ion implantation at the nanoscale. Ge2+ ion implantations at 35 keV and 70 keV energies were carried out using a focused ion beam (FIB) equipped with a liquid metal alloy ion source. The arrays of emitters are subsequently aligned to ø300 nm nanopillar waveguiding structures, fabricated using a combination of electron-beam lithography and plasma etching. The photon collection efficiency and photoluminescence (PL) signal-to-background ratio increased by a factor 8 with respect to the unstructured sample. The photophysical properties of the GeV emitters fabricated by this approach were unaltered with respect to those found in unprocessed diamond. The efficiency of the overall manufacturing process to fabricate individual GeV centers was assessed. Up to 33% of the fabricated nanopillars, depending on ion implantation parameters, were found to contain single emitters.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following:
Quantum measurement, metrology and lithography
Quantum complex systems, networks and cellular automata
Quantum electromechanical systems
Quantum optomechanical systems
Quantum machines, engineering and nanorobotics
Quantum control theory
Quantum information, communication and computation
Quantum thermodynamics
Quantum metamaterials
The effect of Casimir forces on micro- and nano-electromechanical systems
Quantum biology
Quantum sensing
Hybrid quantum systems
Quantum simulations.