Influence of ligand donation on charge transfer properties of cyanido-bridged binuclear Fe-Ru complexes

IF 2.4 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
Han Liu , Xiao-Lin Liu , Hao Wang , Yang Liu , Xin-Tao Wu , Tian-Lu Sheng
{"title":"Influence of ligand donation on charge transfer properties of cyanido-bridged binuclear Fe-Ru complexes","authors":"Han Liu ,&nbsp;Xiao-Lin Liu ,&nbsp;Hao Wang ,&nbsp;Yang Liu ,&nbsp;Xin-Tao Wu ,&nbsp;Tian-Lu Sheng","doi":"10.1016/j.poly.2025.117442","DOIUrl":null,"url":null,"abstract":"<div><div>To investigate how the electron-donating ability of the ligand influence the metal-to-metal charge transfer (MMCT) in mixed-valence (MV) systems, a series of asymmetric binuclear cyanido-bridged complexes CpMe<sub>x</sub>(dppe)FeCNRu(bimpy)(PPh<sub>3</sub>)(NCCH<sub>3</sub>), <strong>N[PF<sub>6</sub>]<sub>2</sub></strong> (x = 1, 3, 4, 5; N = <strong>1</strong>, <strong>2</strong>, <strong>3</strong>, <strong>4</strong>; CpMe = methylcyclopentadiene; CpMe<sub>3</sub> = 1, 2, 4-trimethyl-cyclopentadiene; CpMe<sub>4</sub> = 1, 2, 3, 4-tetramethyl-cyclopentadienyl; CpMe<sub>5</sub> = 1, 2, 3, 4, 5-pentamethyl-cyclopentadienyl; dppe = 1,2-bis(diphenylphosphino)ethane; bimpy = 2, 6-Bis(benzimidazol-2-yl)pyridine; PPh<sub>3</sub> = triphenylphosphine), along with their one-electron oxidized products <strong>N[PF<sub>6</sub>]<sub>3</sub></strong> were synthesized and well characterized. In these MV systems, significant electronic interactions between the two metal centers were revealed by electrochemistry, crystallography, FTIR, UV–vis-NIR, and supported by the DFT calculations. The results showed that the MM’CT energy from the Ru<sup>II</sup> to the Fe<sup>III</sup> increases as the electron-donating ability of the CpMe<sub>X</sub> ligands was enhanced with the addition of methyl substituents. Meanwhile, all the one-electron oxidized products <strong>N[PF<sub>6</sub>]<sub>3</sub></strong> belong to Class II systems.</div></div>","PeriodicalId":20278,"journal":{"name":"Polyhedron","volume":"271 ","pages":"Article 117442"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polyhedron","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0277538725000567","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

To investigate how the electron-donating ability of the ligand influence the metal-to-metal charge transfer (MMCT) in mixed-valence (MV) systems, a series of asymmetric binuclear cyanido-bridged complexes CpMex(dppe)FeCNRu(bimpy)(PPh3)(NCCH3), N[PF6]2 (x = 1, 3, 4, 5; N = 1, 2, 3, 4; CpMe = methylcyclopentadiene; CpMe3 = 1, 2, 4-trimethyl-cyclopentadiene; CpMe4 = 1, 2, 3, 4-tetramethyl-cyclopentadienyl; CpMe5 = 1, 2, 3, 4, 5-pentamethyl-cyclopentadienyl; dppe = 1,2-bis(diphenylphosphino)ethane; bimpy = 2, 6-Bis(benzimidazol-2-yl)pyridine; PPh3 = triphenylphosphine), along with their one-electron oxidized products N[PF6]3 were synthesized and well characterized. In these MV systems, significant electronic interactions between the two metal centers were revealed by electrochemistry, crystallography, FTIR, UV–vis-NIR, and supported by the DFT calculations. The results showed that the MM’CT energy from the RuII to the FeIII increases as the electron-donating ability of the CpMeX ligands was enhanced with the addition of methyl substituents. Meanwhile, all the one-electron oxidized products N[PF6]3 belong to Class II systems.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Polyhedron
Polyhedron 化学-晶体学
CiteScore
4.90
自引率
7.70%
发文量
515
审稿时长
2 months
期刊介绍: Polyhedron publishes original, fundamental, experimental and theoretical work of the highest quality in all the major areas of inorganic chemistry. This includes synthetic chemistry, coordination chemistry, organometallic chemistry, bioinorganic chemistry, and solid-state and materials chemistry. Papers should be significant pieces of work, and all new compounds must be appropriately characterized. The inclusion of single-crystal X-ray structural data is strongly encouraged, but papers reporting only the X-ray structure determination of a single compound will usually not be considered. Papers on solid-state or materials chemistry will be expected to have a significant molecular chemistry component (such as the synthesis and characterization of the molecular precursors and/or a systematic study of the use of different precursors or reaction conditions) or demonstrate a cutting-edge application (for example inorganic materials for energy applications). Papers dealing only with stability constants are not considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信