An integrated Artificial Intelligence and optimization model for operational efficiency and risk reduction in Letter of Credit examination process

Mounaf Asaad Khalil, Majed Hadid, Regina Padmanabhan, Adel Elomri, Laoucine Kerbache
{"title":"An integrated Artificial Intelligence and optimization model for operational efficiency and risk reduction in Letter of Credit examination process","authors":"Mounaf Asaad Khalil,&nbsp;Majed Hadid,&nbsp;Regina Padmanabhan,&nbsp;Adel Elomri,&nbsp;Laoucine Kerbache","doi":"10.1016/j.dajour.2025.100552","DOIUrl":null,"url":null,"abstract":"<div><div>Digital transformation in banking has significantly improved efficiency, including in the critical Letter of Credit (LC) examination area. Despite these advancements, LC examination remains complex, labor-intensive, and error-prone, leading to operational risks and inefficiencies. Integrating Artificial Intelligence (AI) offers a promising solution but requires human checkers to verify AI-generated decisions, ensuring accuracy and compliance. Assigning these verification tasks is essential to fully capitalize on AI’s potential, balancing time savings with risk reduction. This paper explores the underexamined challenge of optimizing the hybrid process of AI-assisted LC examination to enhance trade finance. The research aims to minimize examination risk and maximize checker capacity utilization by offering practical strategies for improvement. Through data-driven research collaboration with international banks and FinTech companies and benchmarking relevant literature, an Integer Linear Programming model was developed to assign review tasks for LC documents indexed by AI based on their criticality and discrepancies to human checkers. The model also considers monetary value, checker expertise, and availability factors. Real case studies evaluated improvements over baseline practices, objectives prioritization, trade-off analysis, and varying supply–demand scenarios. The model achieved a 68.3% reduction in operational risks, improving compliance and trustworthiness while minimizing errors and financial losses. Utilization rates ranged from 34% for risk-focused strategies to 73% for efficiency-driven approaches, providing flexibility for resource allocation aligned with organizational priorities. Using the proposed AI-optimization framework and results, the study offers actionable insights for managers and guidance for researchers.</div></div>","PeriodicalId":100357,"journal":{"name":"Decision Analytics Journal","volume":"14 ","pages":"Article 100552"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Analytics Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772662225000086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Digital transformation in banking has significantly improved efficiency, including in the critical Letter of Credit (LC) examination area. Despite these advancements, LC examination remains complex, labor-intensive, and error-prone, leading to operational risks and inefficiencies. Integrating Artificial Intelligence (AI) offers a promising solution but requires human checkers to verify AI-generated decisions, ensuring accuracy and compliance. Assigning these verification tasks is essential to fully capitalize on AI’s potential, balancing time savings with risk reduction. This paper explores the underexamined challenge of optimizing the hybrid process of AI-assisted LC examination to enhance trade finance. The research aims to minimize examination risk and maximize checker capacity utilization by offering practical strategies for improvement. Through data-driven research collaboration with international banks and FinTech companies and benchmarking relevant literature, an Integer Linear Programming model was developed to assign review tasks for LC documents indexed by AI based on their criticality and discrepancies to human checkers. The model also considers monetary value, checker expertise, and availability factors. Real case studies evaluated improvements over baseline practices, objectives prioritization, trade-off analysis, and varying supply–demand scenarios. The model achieved a 68.3% reduction in operational risks, improving compliance and trustworthiness while minimizing errors and financial losses. Utilization rates ranged from 34% for risk-focused strategies to 73% for efficiency-driven approaches, providing flexibility for resource allocation aligned with organizational priorities. Using the proposed AI-optimization framework and results, the study offers actionable insights for managers and guidance for researchers.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信