Ji Qiu , Zhangyue Wei , Siyu Wang , Shuaiqi Gong , Sheng Zhu , Jinting Xu , Qunjie Xu , Penghui Shi , Yulin Min
{"title":"Competitive adsorption and strain modulation induced by low electronegative elements to improve phosphate tolerance in HT-PEMFC","authors":"Ji Qiu , Zhangyue Wei , Siyu Wang , Shuaiqi Gong , Sheng Zhu , Jinting Xu , Qunjie Xu , Penghui Shi , Yulin Min","doi":"10.1016/j.jcis.2025.02.061","DOIUrl":null,"url":null,"abstract":"<div><div>The cathode Pt-based electrocatalyst, a core component of high-temperature proton exchange membrane fuel cells (HT-PEMFCs), significantly influences fuel cell efficiency. At high temperatures and strongly acidic pH, phosphoric acid tends to adsorb onto the Pt surface by forming Pt<img>O bonds, covering the catalyst’s active sites. Phosphoric acid anions’ toxicity towards Pt significantly impairs the oxygen reduction reaction (ORR) kinetics, posing a major obstacle to the commercial viability of this technology. In this study, we activated the carbon layer by introducing boron (B) to anchor intermetallic compounds clusters, which competitively adsorb desorbed phosphate anions in HT-PEMFCs. This approach mitigates phosphoric acid poisoning. Additionally, the core–shell configuration induces compressive strain in PtMn intermetallic compounds, inhibits transition metal solvation, and regulates the d-band center, optimizing the adsorption energy of oxygen reduction intermediates and enhancing the catalyst’s activity and stability in high-temperature phosphoric acid. At 80 °C, experiments showed the E<sub>1/2</sub> value of PtMn/BC was 0.854 V, 53 mV higher than commercial Pt/C. Additionally, the mass activity (MA) and specific activity (SA) were 5.2 and 2.6 times higher than those of commercial Pt/C, respectively. The maximum power density of the HT-PEMFC in an H<sub>2</sub>/O<sub>2</sub> atmosphere reached 1108.3 mW cm<sup>−2</sup>, significantly higher than that of commercial Pt/C. This value is also higher than most reported ORR catalysts, demonstrating the potential of this catalyst for HT-PEMFC applications.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"687 ","pages":"Pages 518-530"},"PeriodicalIF":9.4000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979725004151","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The cathode Pt-based electrocatalyst, a core component of high-temperature proton exchange membrane fuel cells (HT-PEMFCs), significantly influences fuel cell efficiency. At high temperatures and strongly acidic pH, phosphoric acid tends to adsorb onto the Pt surface by forming PtO bonds, covering the catalyst’s active sites. Phosphoric acid anions’ toxicity towards Pt significantly impairs the oxygen reduction reaction (ORR) kinetics, posing a major obstacle to the commercial viability of this technology. In this study, we activated the carbon layer by introducing boron (B) to anchor intermetallic compounds clusters, which competitively adsorb desorbed phosphate anions in HT-PEMFCs. This approach mitigates phosphoric acid poisoning. Additionally, the core–shell configuration induces compressive strain in PtMn intermetallic compounds, inhibits transition metal solvation, and regulates the d-band center, optimizing the adsorption energy of oxygen reduction intermediates and enhancing the catalyst’s activity and stability in high-temperature phosphoric acid. At 80 °C, experiments showed the E1/2 value of PtMn/BC was 0.854 V, 53 mV higher than commercial Pt/C. Additionally, the mass activity (MA) and specific activity (SA) were 5.2 and 2.6 times higher than those of commercial Pt/C, respectively. The maximum power density of the HT-PEMFC in an H2/O2 atmosphere reached 1108.3 mW cm−2, significantly higher than that of commercial Pt/C. This value is also higher than most reported ORR catalysts, demonstrating the potential of this catalyst for HT-PEMFC applications.
期刊介绍:
The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality.
Emphasis:
The journal emphasizes fundamental scientific innovation within the following categories:
A.Colloidal Materials and Nanomaterials
B.Soft Colloidal and Self-Assembly Systems
C.Adsorption, Catalysis, and Electrochemistry
D.Interfacial Processes, Capillarity, and Wetting
E.Biomaterials and Nanomedicine
F.Energy Conversion and Storage, and Environmental Technologies