Multi-scale feature fusion quantum depthwise Convolutional Neural Networks for text classification

IF 4.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Yixiong Chen , Weichuan Fang
{"title":"Multi-scale feature fusion quantum depthwise Convolutional Neural Networks for text classification","authors":"Yixiong Chen ,&nbsp;Weichuan Fang","doi":"10.1016/j.enganabound.2025.106158","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, with the development of quantum machine learning, Quantum Neural Networks (QNNs) have gained increasing attention in the field of Natural Language Processing (NLP) and have achieved a series of promising results. However, most existing QNN models focus on the architectures of Quantum Recurrent Neural Network (QRNN) and Quantum Self-Attention Mechanism (QSAM). In this work, we propose a novel QNN model based on quantum convolution. We develop the quantum depthwise convolution that significantly reduces the number of parameters and lowers computational complexity. We also introduce the multi-scale feature fusion mechanism to enhance model performance by integrating word-level and sentence-level features. Additionally, we propose the quantum word embedding and quantum sentence embedding, which provide embedding vectors more efficiently. Through experiments on two benchmark text classification datasets, we demonstrate our model outperforms a wide range of state-of-the-art QNN models. Notably, our model achieves a new state-of-the-art test accuracy of 96.77% on the RP dataset. We also show the advantages of our quantum model over its classical counterparts in its ability to improve test accuracy using fewer parameters. Finally, an ablation test confirms the effectiveness of the multi-scale feature fusion mechanism and quantum depthwise convolution in enhancing model performance.</div></div>","PeriodicalId":51039,"journal":{"name":"Engineering Analysis with Boundary Elements","volume":"174 ","pages":"Article 106158"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Analysis with Boundary Elements","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955799725000463","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, with the development of quantum machine learning, Quantum Neural Networks (QNNs) have gained increasing attention in the field of Natural Language Processing (NLP) and have achieved a series of promising results. However, most existing QNN models focus on the architectures of Quantum Recurrent Neural Network (QRNN) and Quantum Self-Attention Mechanism (QSAM). In this work, we propose a novel QNN model based on quantum convolution. We develop the quantum depthwise convolution that significantly reduces the number of parameters and lowers computational complexity. We also introduce the multi-scale feature fusion mechanism to enhance model performance by integrating word-level and sentence-level features. Additionally, we propose the quantum word embedding and quantum sentence embedding, which provide embedding vectors more efficiently. Through experiments on two benchmark text classification datasets, we demonstrate our model outperforms a wide range of state-of-the-art QNN models. Notably, our model achieves a new state-of-the-art test accuracy of 96.77% on the RP dataset. We also show the advantages of our quantum model over its classical counterparts in its ability to improve test accuracy using fewer parameters. Finally, an ablation test confirms the effectiveness of the multi-scale feature fusion mechanism and quantum depthwise convolution in enhancing model performance.
用于文本分类的多尺度特征融合量子深度卷积神经网络
近年来,随着量子机器学习的发展,量子神经网络(quantum Neural Networks, QNNs)在自然语言处理(Natural Language Processing, NLP)领域受到越来越多的关注,并取得了一系列可喜的成果。然而,现有的量子神经网络模型大多集中在量子递归神经网络(QRNN)和量子自注意机制(QSAM)的架构上。在这项工作中,我们提出了一种基于量子卷积的新型QNN模型。我们开发了量子深度卷积,大大减少了参数的数量,降低了计算复杂度。我们还引入了多尺度特征融合机制,通过整合词级和句子级特征来提高模型的性能。此外,我们还提出了量子词嵌入和量子句子嵌入,它们提供了更有效的嵌入向量。通过在两个基准文本分类数据集上的实验,我们证明了我们的模型优于许多最先进的QNN模型。值得注意的是,我们的模型在RP数据集上达到了96.77%的最新测试精度。我们还展示了我们的量子模型在使用更少参数提高测试精度方面的优势。最后,烧蚀实验验证了多尺度特征融合机制和量子深度卷积在提高模型性能方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Engineering Analysis with Boundary Elements
Engineering Analysis with Boundary Elements 工程技术-工程:综合
CiteScore
5.50
自引率
18.20%
发文量
368
审稿时长
56 days
期刊介绍: This journal is specifically dedicated to the dissemination of the latest developments of new engineering analysis techniques using boundary elements and other mesh reduction methods. Boundary element (BEM) and mesh reduction methods (MRM) are very active areas of research with the techniques being applied to solve increasingly complex problems. The journal stresses the importance of these applications as well as their computational aspects, reliability and robustness. The main criteria for publication will be the originality of the work being reported, its potential usefulness and applications of the methods to new fields. In addition to regular issues, the journal publishes a series of special issues dealing with specific areas of current research. The journal has, for many years, provided a channel of communication between academics and industrial researchers working in mesh reduction methods Fields Covered: • Boundary Element Methods (BEM) • Mesh Reduction Methods (MRM) • Meshless Methods • Integral Equations • Applications of BEM/MRM in Engineering • Numerical Methods related to BEM/MRM • Computational Techniques • Combination of Different Methods • Advanced Formulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信