Jingyi Zhou , Mengkai Yang , Weisong Zhao , He Zhang , Lingling Cao , Qi Li , Gangyang Wang
{"title":"Lnc-PHF3-3 aggravates the chemoresistance of osteosarcoma cells to doxorubicin via the miR-142-3p/HMGB1 axis","authors":"Jingyi Zhou , Mengkai Yang , Weisong Zhao , He Zhang , Lingling Cao , Qi Li , Gangyang Wang","doi":"10.1016/j.tranon.2025.102328","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Chemoresistance poses a significant challenge in the treatment of osteosarcoma (OS). Long non-coding RNAs (lncRNAs) have emerged as crucial regulators of cancer biology. Despite accumulating evidence linking dysregulation of lncRNAs to chemoresistance, the specific regulatory functions and complexities involved in lncRNA-mediated modulation of doxorubicin-based chemotherapy in OS remain understudied.</div></div><div><h3>Methods</h3><div>We examined expression levels of lncRNA Lnc-PHF3-3 and miR-142-3p in OS tissues and cell lines by lncRNA microarray profiling and qRT-PCR. Gain-of-function and loss-of-function assays were performed to examine the effect of lncRNA Lnc-PHF3-3 and miR-142-3p on chemoresistance of OS cells. Using fluorescence reporter and western blot assays, we also explored the possible mechanisms of Lnc-PHF3-3 in OS cells.</div></div><div><h3>Results</h3><div>This study aimed to investigate key lncRNAs associated with chemoresistance in OS and identify potential therapeutic targets for patients with chemoresistant OS. To identify chemoresistance-related lncRNAs, microarray analysis was conducted using drug-resistant/drug-sensitive OS cell lines and chemoresistant/chemosensitive OS tissues. Among the identified candidates, a novel lncRNA called Lnc-PHF3-3 was found to be upregulated in doxorubicin-resistant OS cell lines and chemoresistant OS patients. Functional characterization revealed that Lnc-PHF3-3 promoted doxorubicin resistance both in vitro and in vivo. Further investigation revealed that Lnc-PHF3-3 acted as a sponge for microRNA miR-142-3p, and overexpression of miR-142-3p resulted in reduced chemoresistance. Additionally, the high mobility group box 1 (HMGB1) gene was identified as a direct and functional target of miR-142-3p.</div></div><div><h3>Conclusions</h3><div>We conclude that Lnc-PHF3-3 contributes to doxorubicin resistance in OS by sequestering miR-142-3p and subsequently enhancing HMGB1 expression.</div></div>","PeriodicalId":48975,"journal":{"name":"Translational Oncology","volume":"53 ","pages":"Article 102328"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1936523325000592","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Chemoresistance poses a significant challenge in the treatment of osteosarcoma (OS). Long non-coding RNAs (lncRNAs) have emerged as crucial regulators of cancer biology. Despite accumulating evidence linking dysregulation of lncRNAs to chemoresistance, the specific regulatory functions and complexities involved in lncRNA-mediated modulation of doxorubicin-based chemotherapy in OS remain understudied.
Methods
We examined expression levels of lncRNA Lnc-PHF3-3 and miR-142-3p in OS tissues and cell lines by lncRNA microarray profiling and qRT-PCR. Gain-of-function and loss-of-function assays were performed to examine the effect of lncRNA Lnc-PHF3-3 and miR-142-3p on chemoresistance of OS cells. Using fluorescence reporter and western blot assays, we also explored the possible mechanisms of Lnc-PHF3-3 in OS cells.
Results
This study aimed to investigate key lncRNAs associated with chemoresistance in OS and identify potential therapeutic targets for patients with chemoresistant OS. To identify chemoresistance-related lncRNAs, microarray analysis was conducted using drug-resistant/drug-sensitive OS cell lines and chemoresistant/chemosensitive OS tissues. Among the identified candidates, a novel lncRNA called Lnc-PHF3-3 was found to be upregulated in doxorubicin-resistant OS cell lines and chemoresistant OS patients. Functional characterization revealed that Lnc-PHF3-3 promoted doxorubicin resistance both in vitro and in vivo. Further investigation revealed that Lnc-PHF3-3 acted as a sponge for microRNA miR-142-3p, and overexpression of miR-142-3p resulted in reduced chemoresistance. Additionally, the high mobility group box 1 (HMGB1) gene was identified as a direct and functional target of miR-142-3p.
Conclusions
We conclude that Lnc-PHF3-3 contributes to doxorubicin resistance in OS by sequestering miR-142-3p and subsequently enhancing HMGB1 expression.
期刊介绍:
Translational Oncology publishes the results of novel research investigations which bridge the laboratory and clinical settings including risk assessment, cellular and molecular characterization, prevention, detection, diagnosis and treatment of human cancers with the overall goal of improving the clinical care of oncology patients. Translational Oncology will publish laboratory studies of novel therapeutic interventions as well as clinical trials which evaluate new treatment paradigms for cancer. Peer reviewed manuscript types include Original Reports, Reviews and Editorials.