Empowering large language models for automated clinical assessment with generation-augmented retrieval and hierarchical chain-of-thought

IF 6.1 2区 医学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Zhanzhong Gu , Wenjing Jia , Massimo Piccardi , Ping Yu
{"title":"Empowering large language models for automated clinical assessment with generation-augmented retrieval and hierarchical chain-of-thought","authors":"Zhanzhong Gu ,&nbsp;Wenjing Jia ,&nbsp;Massimo Piccardi ,&nbsp;Ping Yu","doi":"10.1016/j.artmed.2025.103078","DOIUrl":null,"url":null,"abstract":"<div><h3>Background:</h3><div>Understanding and extracting valuable information from electronic health records (EHRs) is important for improving healthcare delivery and health outcomes. Large language models (LLMs) have demonstrated significant proficiency in natural language understanding and processing, offering promises for automating the typically labor-intensive and time-consuming analytical tasks with EHRs. Despite the active application of LLMs in the healthcare setting, many foundation models lack real-world healthcare relevance. Applying LLMs to EHRs is still in its early stage. To advance this field, in this study, we pioneer a generation-augmented prompting paradigm “GAPrompt” to empower generic LLMs for automated clinical assessment, in particular, quantitative stroke severity assessment, using data extracted from EHRs.</div></div><div><h3>Methods:</h3><div>The GAPrompt paradigm comprises five components: (i) prompt-driven selection of LLMs, (ii) generation-augmented construction of a knowledge base, (iii) summary-based generation-augmented retrieval (SGAR); (iv) inferencing with a hierarchical chain-of-thought (HCoT), and (v) ensembling of multiple generations.</div></div><div><h3>Results:</h3><div>GAPrompt addresses the limitations of generic LLMs in clinical applications in a progressive manner. It efficiently evaluates the applicability of LLMs in specific tasks through LLM selection prompting, enhances their understanding of task-specific knowledge from the constructed knowledge base, improves the accuracy of knowledge and demonstration retrieval via SGAR, elevates LLM inference precision through HCoT, enhances generation robustness, and reduces hallucinations of LLM via ensembling. Experiment results demonstrate the capability of our method to empower LLMs to automatically assess EHRs and generate quantitative clinical assessment results.</div></div><div><h3>Conclusion:</h3><div>Our study highlights the applicability of enhancing the capabilities of foundation LLMs in medical domain-specific tasks, <em>i.e.</em>, automated quantitative analysis of EHRs, addressing the challenges of labor-intensive and often manually conducted quantitative assessment of stroke in clinical practice and research. This approach offers a practical and accessible GAPrompt paradigm for researchers and industry practitioners seeking to leverage the power of LLMs in domain-specific applications. Its utility extends beyond the medical domain, applicable to a wide range of fields.</div></div>","PeriodicalId":55458,"journal":{"name":"Artificial Intelligence in Medicine","volume":"162 ","pages":"Article 103078"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0933365725000132","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Background:

Understanding and extracting valuable information from electronic health records (EHRs) is important for improving healthcare delivery and health outcomes. Large language models (LLMs) have demonstrated significant proficiency in natural language understanding and processing, offering promises for automating the typically labor-intensive and time-consuming analytical tasks with EHRs. Despite the active application of LLMs in the healthcare setting, many foundation models lack real-world healthcare relevance. Applying LLMs to EHRs is still in its early stage. To advance this field, in this study, we pioneer a generation-augmented prompting paradigm “GAPrompt” to empower generic LLMs for automated clinical assessment, in particular, quantitative stroke severity assessment, using data extracted from EHRs.

Methods:

The GAPrompt paradigm comprises five components: (i) prompt-driven selection of LLMs, (ii) generation-augmented construction of a knowledge base, (iii) summary-based generation-augmented retrieval (SGAR); (iv) inferencing with a hierarchical chain-of-thought (HCoT), and (v) ensembling of multiple generations.

Results:

GAPrompt addresses the limitations of generic LLMs in clinical applications in a progressive manner. It efficiently evaluates the applicability of LLMs in specific tasks through LLM selection prompting, enhances their understanding of task-specific knowledge from the constructed knowledge base, improves the accuracy of knowledge and demonstration retrieval via SGAR, elevates LLM inference precision through HCoT, enhances generation robustness, and reduces hallucinations of LLM via ensembling. Experiment results demonstrate the capability of our method to empower LLMs to automatically assess EHRs and generate quantitative clinical assessment results.

Conclusion:

Our study highlights the applicability of enhancing the capabilities of foundation LLMs in medical domain-specific tasks, i.e., automated quantitative analysis of EHRs, addressing the challenges of labor-intensive and often manually conducted quantitative assessment of stroke in clinical practice and research. This approach offers a practical and accessible GAPrompt paradigm for researchers and industry practitioners seeking to leverage the power of LLMs in domain-specific applications. Its utility extends beyond the medical domain, applicable to a wide range of fields.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Artificial Intelligence in Medicine
Artificial Intelligence in Medicine 工程技术-工程:生物医学
CiteScore
15.00
自引率
2.70%
发文量
143
审稿时长
6.3 months
期刊介绍: Artificial Intelligence in Medicine publishes original articles from a wide variety of interdisciplinary perspectives concerning the theory and practice of artificial intelligence (AI) in medicine, medically-oriented human biology, and health care. Artificial intelligence in medicine may be characterized as the scientific discipline pertaining to research studies, projects, and applications that aim at supporting decision-based medical tasks through knowledge- and/or data-intensive computer-based solutions that ultimately support and improve the performance of a human care provider.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信