Highly censored survival analysis via data augmentation

IF 4.9 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Hanpu Zhou , Xinyi Zhang , Hong Wang
{"title":"Highly censored survival analysis via data augmentation","authors":"Hanpu Zhou ,&nbsp;Xinyi Zhang ,&nbsp;Hong Wang","doi":"10.1016/j.bspc.2025.107675","DOIUrl":null,"url":null,"abstract":"<div><div>Recently, survival models have found vast applications in biostatistics, bioinformatics, reliability engineering, finance and related fields. But survival data often face the small sample size and highly censored problem due to long experimental periods and high data collection costs. The lack of sufficient samples severely hinders the predictive power of survival models, especially when data-driven machine learning methods are increasingly used in survival analysis. In this research, we propose two survival data augmentation algorithms, namely Parametric algorithm for Survival Data Augmentation via a Two-stage process (PSDATA) and non-Parametric algorithm for Survival Data Augmentation via a Two-stage process(nPSDATA), which can effectively expand the small sample survival data set. We validate the effectiveness of the algorithms on both simulated and real data sets based on RSF and Cox models. Extensive experiments have shown that both strategies can improve the predictive performance substantially. Further experiments have revealed that using the proposed approaches, the cost of data collection can be reduced by a large extent with only a slight decrease in predictability.</div></div>","PeriodicalId":55362,"journal":{"name":"Biomedical Signal Processing and Control","volume":"106 ","pages":"Article 107675"},"PeriodicalIF":4.9000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Signal Processing and Control","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1746809425001867","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, survival models have found vast applications in biostatistics, bioinformatics, reliability engineering, finance and related fields. But survival data often face the small sample size and highly censored problem due to long experimental periods and high data collection costs. The lack of sufficient samples severely hinders the predictive power of survival models, especially when data-driven machine learning methods are increasingly used in survival analysis. In this research, we propose two survival data augmentation algorithms, namely Parametric algorithm for Survival Data Augmentation via a Two-stage process (PSDATA) and non-Parametric algorithm for Survival Data Augmentation via a Two-stage process(nPSDATA), which can effectively expand the small sample survival data set. We validate the effectiveness of the algorithms on both simulated and real data sets based on RSF and Cox models. Extensive experiments have shown that both strategies can improve the predictive performance substantially. Further experiments have revealed that using the proposed approaches, the cost of data collection can be reduced by a large extent with only a slight decrease in predictability.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomedical Signal Processing and Control
Biomedical Signal Processing and Control 工程技术-工程:生物医学
CiteScore
9.80
自引率
13.70%
发文量
822
审稿时长
4 months
期刊介绍: Biomedical Signal Processing and Control aims to provide a cross-disciplinary international forum for the interchange of information on research in the measurement and analysis of signals and images in clinical medicine and the biological sciences. Emphasis is placed on contributions dealing with the practical, applications-led research on the use of methods and devices in clinical diagnosis, patient monitoring and management. Biomedical Signal Processing and Control reflects the main areas in which these methods are being used and developed at the interface of both engineering and clinical science. The scope of the journal is defined to include relevant review papers, technical notes, short communications and letters. Tutorial papers and special issues will also be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信