A-Eval: A benchmark for cross-dataset and cross-modality evaluation of abdominal multi-organ segmentation

IF 10.7 1区 医学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ziyan Huang , Zhongying Deng , Jin Ye , Haoyu Wang , Yanzhou Su , Tianbin Li , Hui Sun , Junlong Cheng , Jianpin Chen , Junjun He , Yun Gu , Shaoting Zhang , Lixu Gu , Yu Qiao
{"title":"A-Eval: A benchmark for cross-dataset and cross-modality evaluation of abdominal multi-organ segmentation","authors":"Ziyan Huang ,&nbsp;Zhongying Deng ,&nbsp;Jin Ye ,&nbsp;Haoyu Wang ,&nbsp;Yanzhou Su ,&nbsp;Tianbin Li ,&nbsp;Hui Sun ,&nbsp;Junlong Cheng ,&nbsp;Jianpin Chen ,&nbsp;Junjun He ,&nbsp;Yun Gu ,&nbsp;Shaoting Zhang ,&nbsp;Lixu Gu ,&nbsp;Yu Qiao","doi":"10.1016/j.media.2025.103499","DOIUrl":null,"url":null,"abstract":"<div><div>Although deep learning has revolutionized abdominal multi-organ segmentation, its models often struggle with generalization due to training on small-scale, specific datasets and modalities. The recent emergence of large-scale datasets may mitigate this issue, but some important questions remain unsolved: <strong>Can models trained on these large datasets generalize well across different datasets and imaging modalities? If yes/no, how can we further improve their generalizability?</strong> To address these questions, we introduce A-Eval, a benchmark for the cross-dataset and cross-modality Evaluation (’Eval’) of Abdominal (’A’) multi-organ segmentation, integrating seven datasets across CT and MRI modalities. Our evaluations indicate that significant domain gaps persist despite larger data scales. While increased datasets improve generalization, model performance on unseen data remains inconsistent. Joint training across multiple datasets and modalities enhances generalization, though annotation inconsistencies pose challenges. These findings highlight the need for diverse and well-curated training data across various clinical scenarios and modalities to develop robust medical imaging models. The code and pre-trained models are available at <span><span>https://github.com/uni-medical/A-Eval</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"101 ","pages":"Article 103499"},"PeriodicalIF":10.7000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361841525000477","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Although deep learning has revolutionized abdominal multi-organ segmentation, its models often struggle with generalization due to training on small-scale, specific datasets and modalities. The recent emergence of large-scale datasets may mitigate this issue, but some important questions remain unsolved: Can models trained on these large datasets generalize well across different datasets and imaging modalities? If yes/no, how can we further improve their generalizability? To address these questions, we introduce A-Eval, a benchmark for the cross-dataset and cross-modality Evaluation (’Eval’) of Abdominal (’A’) multi-organ segmentation, integrating seven datasets across CT and MRI modalities. Our evaluations indicate that significant domain gaps persist despite larger data scales. While increased datasets improve generalization, model performance on unseen data remains inconsistent. Joint training across multiple datasets and modalities enhances generalization, though annotation inconsistencies pose challenges. These findings highlight the need for diverse and well-curated training data across various clinical scenarios and modalities to develop robust medical imaging models. The code and pre-trained models are available at https://github.com/uni-medical/A-Eval.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Medical image analysis
Medical image analysis 工程技术-工程:生物医学
CiteScore
22.10
自引率
6.40%
发文量
309
审稿时长
6.6 months
期刊介绍: Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信