Maria D. Guillen , Vincent Charles , Juan Aparicio
{"title":"Enhanced efficiency assessment in manufacturing: Leveraging machine learning for improved performance analysis","authors":"Maria D. Guillen , Vincent Charles , Juan Aparicio","doi":"10.1016/j.omega.2025.103300","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces EATBoosting, a novel application of gradient tree boosting within the Data Envelopment Analysis (DEA) framework, designed to address undesirable outputs in printed circuit board (PCB) manufacturing. Recognizing the challenge of balancing desirable and undesirable outputs in efficiency assessments, our approach leverages machine learning to enhance the discriminatory power of traditional DEA models, facilitating more precise efficiency estimations. By integrating gradient tree boosting, EATBoosting optimizes the handling of complex data patterns and maximizes accuracy in predicting production functions, thus improving upon the deterministic nature of conventional DEA and Free Disposal Hull methods. The practicality of our approach is demonstrated through its application to a PCB assembly process, highlighting its capacity to discern subtle inefficiencies that traditional methods might overlook. This methodology not only enriches the analytical toolkit available for operational efficiency analysis but also sets a precedent for incorporating advanced machine learning techniques in performance evaluation across various industries. Looking forward, the continued integration of such innovative methods promises to revolutionize efficiency analysis, making it more adaptive to complex industrial challenges and more reflective of real-world production dynamics. This work not only broadens the scope of DEA applications but also invites further research into the integration of machine learning to refine performance measurement and management.</div></div>","PeriodicalId":19529,"journal":{"name":"Omega-international Journal of Management Science","volume":"134 ","pages":"Article 103300"},"PeriodicalIF":6.7000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Omega-international Journal of Management Science","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030504832500026X","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces EATBoosting, a novel application of gradient tree boosting within the Data Envelopment Analysis (DEA) framework, designed to address undesirable outputs in printed circuit board (PCB) manufacturing. Recognizing the challenge of balancing desirable and undesirable outputs in efficiency assessments, our approach leverages machine learning to enhance the discriminatory power of traditional DEA models, facilitating more precise efficiency estimations. By integrating gradient tree boosting, EATBoosting optimizes the handling of complex data patterns and maximizes accuracy in predicting production functions, thus improving upon the deterministic nature of conventional DEA and Free Disposal Hull methods. The practicality of our approach is demonstrated through its application to a PCB assembly process, highlighting its capacity to discern subtle inefficiencies that traditional methods might overlook. This methodology not only enriches the analytical toolkit available for operational efficiency analysis but also sets a precedent for incorporating advanced machine learning techniques in performance evaluation across various industries. Looking forward, the continued integration of such innovative methods promises to revolutionize efficiency analysis, making it more adaptive to complex industrial challenges and more reflective of real-world production dynamics. This work not only broadens the scope of DEA applications but also invites further research into the integration of machine learning to refine performance measurement and management.
期刊介绍:
Omega reports on developments in management, including the latest research results and applications. Original contributions and review articles describe the state of the art in specific fields or functions of management, while there are shorter critical assessments of particular management techniques. Other features of the journal are the "Memoranda" section for short communications and "Feedback", a correspondence column. Omega is both stimulating reading and an important source for practising managers, specialists in management services, operational research workers and management scientists, management consultants, academics, students and research personnel throughout the world. The material published is of high quality and relevance, written in a manner which makes it accessible to all of this wide-ranging readership. Preference will be given to papers with implications to the practice of management. Submissions of purely theoretical papers are discouraged. The review of material for publication in the journal reflects this aim.