Xuewen Liu, Jing Chen, Hanxuan Wang, Benjamin Lambert and Ardemis A. Boghossian*,
{"title":"Cation Pretreatment Enables the Saline Stability of a Near-Infrared Sensor for Dopamine","authors":"Xuewen Liu, Jing Chen, Hanxuan Wang, Benjamin Lambert and Ardemis A. Boghossian*, ","doi":"10.1021/acsbiomedchemau.4c0009410.1021/acsbiomedchemau.4c00094","DOIUrl":null,"url":null,"abstract":"<p >Single-walled carbon nanotubes (SWCNTs) are wrapped with single-stranded DNA (ssDNA) to create near-infrared (NIR-II) fluorescent sensors for diverse analytes. However, the interaction between the negatively charged backbone of ssDNA and cations in biological saline alters fluorescence unpredictably. This susceptibility limits the application of these sensors in biological media. To address this limitation, this study develops a cation-pretreatment strategy that quenches the baseline fluorescence of ssDNA-SWCNTs to enable turn-on responses that are selectively triggered by analytes in saline. An initial screening of Na<sup>+</sup>, K<sup>+</sup>, Mg<sup>2+</sup>, Ca<sup>2+</sup>, and Al<sup>3+</sup> pretreatments of gel-encapsulated (AT)<sub>15</sub>-SWCNTs reveals that Al<sup>3+</sup> pretreatment induces a stable quenching of fluorescence that is reversible only on Al<sup>3+</sup> chelation or precipitation. We apply this Al<sup>3+</sup> pretreatment to develop a saline-resilient, near-infrared sensor for dopamine. The Al<sup>3+</sup>-treated (AT)<sub>15</sub>-SWCNTs show a concentration- and chirality-dependent fluorescence response over a dynamic range of 1 nM and 10 μM dopamine, achieving a 110-fold increase in the turn-on response to 10 mM dopamine in buffered saline compared with the untreated (AT)<sub>15</sub>-SWCNTs. Further study of the effects of pH and different salts on the dopamine response suggests a mechanism that relies on competing trivalent cations and negative DNA phosphate interactions. These interactions lay the framework for saline-resilient optical sensors that exploit DNA as a charged-based actuator for modulating the exciton dynamics and controlling the SWCNT fluorescence.</p>","PeriodicalId":29802,"journal":{"name":"ACS Bio & Med Chem Au","volume":"5 1","pages":"166–174 166–174"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsbiomedchemau.4c00094","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Bio & Med Chem Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsbiomedchemau.4c00094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Single-walled carbon nanotubes (SWCNTs) are wrapped with single-stranded DNA (ssDNA) to create near-infrared (NIR-II) fluorescent sensors for diverse analytes. However, the interaction between the negatively charged backbone of ssDNA and cations in biological saline alters fluorescence unpredictably. This susceptibility limits the application of these sensors in biological media. To address this limitation, this study develops a cation-pretreatment strategy that quenches the baseline fluorescence of ssDNA-SWCNTs to enable turn-on responses that are selectively triggered by analytes in saline. An initial screening of Na+, K+, Mg2+, Ca2+, and Al3+ pretreatments of gel-encapsulated (AT)15-SWCNTs reveals that Al3+ pretreatment induces a stable quenching of fluorescence that is reversible only on Al3+ chelation or precipitation. We apply this Al3+ pretreatment to develop a saline-resilient, near-infrared sensor for dopamine. The Al3+-treated (AT)15-SWCNTs show a concentration- and chirality-dependent fluorescence response over a dynamic range of 1 nM and 10 μM dopamine, achieving a 110-fold increase in the turn-on response to 10 mM dopamine in buffered saline compared with the untreated (AT)15-SWCNTs. Further study of the effects of pH and different salts on the dopamine response suggests a mechanism that relies on competing trivalent cations and negative DNA phosphate interactions. These interactions lay the framework for saline-resilient optical sensors that exploit DNA as a charged-based actuator for modulating the exciton dynamics and controlling the SWCNT fluorescence.
期刊介绍:
ACS Bio & Med Chem Au is a broad scope open access journal which publishes short letters comprehensive articles reviews and perspectives in all aspects of biological and medicinal chemistry. Studies providing fundamental insights or describing novel syntheses as well as clinical or other applications-based work are welcomed.This broad scope includes experimental and theoretical studies on the chemical physical mechanistic and/or structural basis of biological or cell function in all domains of life. It encompasses the fields of chemical biology synthetic biology disease biology cell biology agriculture and food natural products research nucleic acid biology neuroscience structural biology and biophysics.The journal publishes studies that pertain to a broad range of medicinal chemistry including compound design and optimization biological evaluation molecular mechanistic understanding of drug delivery and drug delivery systems imaging agents and pharmacology and translational science of both small and large bioactive molecules. Novel computational cheminformatics and structural studies for the identification (or structure-activity relationship analysis) of bioactive molecules ligands and their targets are also welcome. The journal will consider computational studies applying established computational methods but only in combination with novel and original experimental data (e.g. in cases where new compounds have been designed and tested).Also included in the scope of the journal are articles relating to infectious diseases research on pathogens host-pathogen interactions therapeutics diagnostics vaccines drug-delivery systems and other biomedical technology development pertaining to infectious diseases.