Intervening nuclear obscuration changing the X-ray look of the z ≈ 6 quasi-stellar object CFHQS J164121+375520

IF 5.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
F. Vito, W. N. Brandt, A. Comastri, R. Gilli, F. Bauer, S. Belladitta, G. Chartas, K. Iwasawa, G. Lanzuisi, B. Luo, S. Marchesi, M. Mignoli, F. Ricci, O. Shemmer, C. Spingola, C. Vignali, W. Boschin, F. Cusano, D. Paris
{"title":"Intervening nuclear obscuration changing the X-ray look of the z ≈ 6 quasi-stellar object CFHQS J164121+375520","authors":"F. Vito, W. N. Brandt, A. Comastri, R. Gilli, F. Bauer, S. Belladitta, G. Chartas, K. Iwasawa, G. Lanzuisi, B. Luo, S. Marchesi, M. Mignoli, F. Ricci, O. Shemmer, C. Spingola, C. Vignali, W. Boschin, F. Cusano, D. Paris","doi":"10.1051/0004-6361/202453618","DOIUrl":null,"url":null,"abstract":"X-ray observations of the optically selected <i>z<i/> = 6.025 quasi-stellar object (QSO) CFHQS J164121+375520 (hereafter J1641) revealed that its flux dropped by a factor of ≳7 between 2018, when it was a bright and soft X-ray source, and 2021. Such a strong variability amplitude has not been observed before among <i>z<i/> > 6 QSOs, and the underlying physical mechanism was unclear. We carried out a new X-ray and rest-frame UV monitoring campaign of J1641 over 2022–2024. We detected J1641 with <i>Chandra<i/> in the 2–7 keV band, while no significant emission is detected at softer X-ray energies, making J1641 an X-ray changing-look QSO at <i>z<i/> > 6. Compared with the 2018 epoch, the 0.5–2 keV flux dropped by a factor of > 20. We ascribe this behavior to intervening, and still ongoing, obscuration by Compton-thick gas intercepting our line of sight between 2018 and 2021. The screening material could be an inner disk or a failed nuclear wind whose thickness increased. Another possibility is that we have witnessed an occultation event due to dust-free clouds located at parsec or subparsec scales, similar to those recently invoked to explain the remarkable X-ray weakness of active galactic nuclei discovered by JWST. These interpretations are also consistent with the lack of strong variations in the QSO rest-frame UV light curve over the same period. Future monitoring of J1641 and the possible discovery of other X-ray changing look QSOs at <i>z<i/> > 6 will return precious information about the physics of rapid supermassive black hole growth at high redshifts.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":"129 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/0004-6361/202453618","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

X-ray observations of the optically selected z = 6.025 quasi-stellar object (QSO) CFHQS J164121+375520 (hereafter J1641) revealed that its flux dropped by a factor of ≳7 between 2018, when it was a bright and soft X-ray source, and 2021. Such a strong variability amplitude has not been observed before among z > 6 QSOs, and the underlying physical mechanism was unclear. We carried out a new X-ray and rest-frame UV monitoring campaign of J1641 over 2022–2024. We detected J1641 with Chandra in the 2–7 keV band, while no significant emission is detected at softer X-ray energies, making J1641 an X-ray changing-look QSO at z > 6. Compared with the 2018 epoch, the 0.5–2 keV flux dropped by a factor of > 20. We ascribe this behavior to intervening, and still ongoing, obscuration by Compton-thick gas intercepting our line of sight between 2018 and 2021. The screening material could be an inner disk or a failed nuclear wind whose thickness increased. Another possibility is that we have witnessed an occultation event due to dust-free clouds located at parsec or subparsec scales, similar to those recently invoked to explain the remarkable X-ray weakness of active galactic nuclei discovered by JWST. These interpretations are also consistent with the lack of strong variations in the QSO rest-frame UV light curve over the same period. Future monitoring of J1641 and the possible discovery of other X-ray changing look QSOs at z > 6 will return precious information about the physics of rapid supermassive black hole growth at high redshifts.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Astronomy & Astrophysics
Astronomy & Astrophysics 地学天文-天文与天体物理
CiteScore
10.20
自引率
27.70%
发文量
2105
审稿时长
1-2 weeks
期刊介绍: Astronomy & Astrophysics is an international Journal that publishes papers on all aspects of astronomy and astrophysics (theoretical, observational, and instrumental) independently of the techniques used to obtain the results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信