Surface-Emanated Vertical Organic Semiconducting Nanobrushes

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Lei Yang, Congqi Li, Na An, Jinhua Gao, Yanan Wei, Jiawei Qiao, Junpeng Dai, Na Yu, Yan Sun, Qijie Lin, Xin Zhang, Jianqi Zhang, Zheng Tang, Xiaotao Hao, Guanghao Lu, Zhixiang Wei, Ian Manners, Yongbo Kuang, Hui Huang, Antonio Facchetti, Huibin Qiu
{"title":"Surface-Emanated Vertical Organic Semiconducting Nanobrushes","authors":"Lei Yang, Congqi Li, Na An, Jinhua Gao, Yanan Wei, Jiawei Qiao, Junpeng Dai, Na Yu, Yan Sun, Qijie Lin, Xin Zhang, Jianqi Zhang, Zheng Tang, Xiaotao Hao, Guanghao Lu, Zhixiang Wei, Ian Manners, Yongbo Kuang, Hui Huang, Antonio Facchetti, Huibin Qiu","doi":"10.1021/jacs.4c16540","DOIUrl":null,"url":null,"abstract":"Polymer self-assembly offers an important route to construct well-defined nanostructures. However, it remains challenging to assemble polymers into vertically oriented nanostructures. Here, we use a seed-induced confinement self-assembly strategy to construct vertically aligned semiconducting nanobrushes from polyfluorene-based polymers on conductive substrates. Mechanism studies elucidate that the immobilized seeds on the substrate initiate the vertical growth of nanobrushes, and supercritical drying as well as the rigid charged coronas collectively contribute to retaining the vertical architecture. This process enables nanobrushes with ∼40× higher charge mobilities than their bulk film counterparts. Thus, inverted organic solar cells using the nanobrushes as the electron transporting layer (ETL) exhibit a record power conversion efficiency of 18.51% as a result of increased ETL texturing and the ETL-active layer interface favoring electron extraction. Moreover, our approach also enables the uniform growth of nanobrushes on a nanoporous photoanode (bismuth vanadate) for photoelectrochemical water splitting, improving catalyst distribution and electron transfer. Our work presents a feasible approach to fabricating challenging vertical polymer nanostructures, thereby unlocking the tremendous potential of conjugated polymers in optoelectronic applications.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"1 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c16540","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Polymer self-assembly offers an important route to construct well-defined nanostructures. However, it remains challenging to assemble polymers into vertically oriented nanostructures. Here, we use a seed-induced confinement self-assembly strategy to construct vertically aligned semiconducting nanobrushes from polyfluorene-based polymers on conductive substrates. Mechanism studies elucidate that the immobilized seeds on the substrate initiate the vertical growth of nanobrushes, and supercritical drying as well as the rigid charged coronas collectively contribute to retaining the vertical architecture. This process enables nanobrushes with ∼40× higher charge mobilities than their bulk film counterparts. Thus, inverted organic solar cells using the nanobrushes as the electron transporting layer (ETL) exhibit a record power conversion efficiency of 18.51% as a result of increased ETL texturing and the ETL-active layer interface favoring electron extraction. Moreover, our approach also enables the uniform growth of nanobrushes on a nanoporous photoanode (bismuth vanadate) for photoelectrochemical water splitting, improving catalyst distribution and electron transfer. Our work presents a feasible approach to fabricating challenging vertical polymer nanostructures, thereby unlocking the tremendous potential of conjugated polymers in optoelectronic applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信