Arylsulfonothioates: Thiol-Activated Donors of Hydropersulfides which are Excreted to Maintain Cellular Redox Homeostasis or Retained to Counter Oxidative Stress

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Vinayak S. Khodade, Qi Liu, Chengximeng Zhang, Gizem Keceli, Nazareno Paolocci, John P. Toscano
{"title":"Arylsulfonothioates: Thiol-Activated Donors of Hydropersulfides which are Excreted to Maintain Cellular Redox Homeostasis or Retained to Counter Oxidative Stress","authors":"Vinayak S. Khodade, Qi Liu, Chengximeng Zhang, Gizem Keceli, Nazareno Paolocci, John P. Toscano","doi":"10.1021/jacs.4c17661","DOIUrl":null,"url":null,"abstract":"Despite their biological significance, the study of hydropersulfides (RSSH) is often limited due to their inherent instability. Here, we introduce arylsulfonothioates as thiol-activated RSSH donors and provide insight into cellular reactive sulfur species homeostasis. These precursors persulfidate physiologically relevant thiols (RSH) to form the corresponding RSSH. Real-time monitoring of hydrogen sulfide (H<sub>2</sub>S) generation via membrane inlet mass spectrometry (MIMS) was employed to follow RSSH production, revealing that electron-donating aryl substituents marginally slow RSSH release rates, whereas electron-withdrawing substituents slightly accelerate release. Furthermore, arylsulfonothioates with strong electron-withdrawing substituents offer superior protection against doxorubicin (DOX)-induced cardiotoxicity. Experiments using H9c2 cardiomyocytes affirmed the cell-permeability of arylsulfonothioates and their ability to increase intracellular RSSH levels and protein persulfidation levels. Notably, we observe the excretion of RSSH into the extracellular medium. Further investigations revealed the involvement of the cystine/glutamate antiporter SLC7A11, as cotreatment with its inhibitor, sulfasalazine, significantly reduce extracellular RSSH release. H9c2 cells exhibit tolerance to arylsulfonothioate <b>1g</b> with an electron-withdrawing 4-cyano group at 1 mM; however, inhibition of the cystine antiporter results in a minor decrease in cell viability. Under oxidative stress conditions induced by DOX or hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), cotreatment with <b>1g</b> diminishes the excretion of RSSH and confers cytoprotection against DOX or H<sub>2</sub>O<sub>2</sub>-mediated toxicity. Our findings show adaptive cellular responses to RSSH levels, demonstrating excretion under elevated conditions to maintain redox homeostasis and intracellular retention as a protective response during oxidative stress.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"57 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c17661","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Despite their biological significance, the study of hydropersulfides (RSSH) is often limited due to their inherent instability. Here, we introduce arylsulfonothioates as thiol-activated RSSH donors and provide insight into cellular reactive sulfur species homeostasis. These precursors persulfidate physiologically relevant thiols (RSH) to form the corresponding RSSH. Real-time monitoring of hydrogen sulfide (H2S) generation via membrane inlet mass spectrometry (MIMS) was employed to follow RSSH production, revealing that electron-donating aryl substituents marginally slow RSSH release rates, whereas electron-withdrawing substituents slightly accelerate release. Furthermore, arylsulfonothioates with strong electron-withdrawing substituents offer superior protection against doxorubicin (DOX)-induced cardiotoxicity. Experiments using H9c2 cardiomyocytes affirmed the cell-permeability of arylsulfonothioates and their ability to increase intracellular RSSH levels and protein persulfidation levels. Notably, we observe the excretion of RSSH into the extracellular medium. Further investigations revealed the involvement of the cystine/glutamate antiporter SLC7A11, as cotreatment with its inhibitor, sulfasalazine, significantly reduce extracellular RSSH release. H9c2 cells exhibit tolerance to arylsulfonothioate 1g with an electron-withdrawing 4-cyano group at 1 mM; however, inhibition of the cystine antiporter results in a minor decrease in cell viability. Under oxidative stress conditions induced by DOX or hydrogen peroxide (H2O2), cotreatment with 1g diminishes the excretion of RSSH and confers cytoprotection against DOX or H2O2-mediated toxicity. Our findings show adaptive cellular responses to RSSH levels, demonstrating excretion under elevated conditions to maintain redox homeostasis and intracellular retention as a protective response during oxidative stress.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信